ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Injective function - Wikipedia, the free encyclopedia

Injective function

From Wikipedia, the free encyclopedia

An injective function (injection)
An injective function (injection)
Another injective function (this one is a bijection)
Another injective function (this one is a bijection)
A non-injective function (this one happens to be a surjection)
A non-injective function (this one happens to be a surjection)

In mathematics, an injective function is a function which associates distinct arguments with distinct values.

An injective function is called an injection, and is also said to be an information-preserving or one-to-one function (the latter is not to be confused with one-to-one correspondence, i.e. a bijective function).

A function f that is not injective is sometimes called many-to-one. (However, this terminology is also sometimes used to mean "single-valued", i.e. each argument is mapped to at most one value.)

Contents

[edit] Definition

Let f be a function whose domain is a set A. It is injective if, for all a and b in A such that f(a)=f(b), we have a = b.

[edit] Examples and counter-examples

  • For any set X, the identity function on X is injective.
  • The function f : R → R defined by f(x) = 2x + 1 is injective.
  • The function g : R → R defined by g(x) = x2 is not injective, because (for example) g(1) = 1 = g(−1). However, if g is redefined so that its domain is the non-negative real numbers [0,+∞), then g is injective.
  • The exponential function \exp : \mathbb{R} \to \mathbb{R} : x \mapsto \mathrm{e}^x is injective (but not surjective as no value maps to a negative number).
  • The natural logarithm function \ln : (0,+\infty) \to \mathbb{R} : x \mapsto \ln{x} is injective.
  • The function g : R → R defined by g(x) = xnx is not injective, since, for example, g(0) = g(1).

More generally, when X and Y are both the real line R, then an injective function f : R → R is one whose graph is never intersected by any horizontal line more than once.

[edit] Injections can be undone

Functions with left inverses are always injections. That is, given f : X → Y, if there is a function g : Y → X such that, for every x \in X

g(f(x)) = x \, (f can be undone by g)

then f is injective. In this case, f is called a section of g and g is called a retraction of f.

Conversely, every injection f with non-empty domain has a left inverse g (in conventional mathematics[1]). Note that g may not be a complete inverse of f because the composition in the other order, f o g, may not be the identity on Y. In other words, a function that can be undone or "reversed", such as f, is not necessarily invertible (bijective). Injections are "reversible" but not always invertible.

Although it is impossible to reverse a non-injective (and therefore information-losing) function, you can at least obtain a "quasi-inverse" of it, that is a multiple-valued function.

[edit] Injections may be made invertible

In fact, to turn an injective function f : X → Y into a bijective (hence invertible) function, it suffices to replace its codomain Y by its actual range J = f(X). That is, let g : X → J such that g(x) = f(x) for all x in X; then g is bijective. Indeed, f can be factored as inclJ,Yog, where inclJ,Yis the inclusion function from J into Y.

[edit] Other properties

  • If f and g are both injective, then f o g is injective.
The composition of two injective functions is injective.
The composition of two injective functions is injective.
  • If g o f is injective, then f is injective (but g need not be).
  • f : X → Y is injective if and only if, given any functions g, h : W → X, whenever f o g = f o h, then g = h. In other words, injective functions are precisely the monomorphisms in the category Set of sets.
  • If f : X → Y is injective and A is a subset of X, then f −1(f(A)) = A. Thus, A can be recovered from its image f(A).
  • If f : X → Y is injective and A and B are both subsets of X, then f(A ∩ B) = f(A) ∩ f(B).
  • Every function h : W → Y can be decomposed as h = f o g for a suitable injection f and surjection g. This decomposition is unique up to isomorphism, and f may be thought of as the inclusion function of the range h(W) of h as a subset of the codomain Y of h.
  • If f : X → Y is an injective function, then Y has at least as many elements as X, in the sense of cardinal numbers.
  • If both X and Y are finite with the same number of elements, then f : X → Y is injective if and only if f is surjective.
  • Every embedding is injective.

[edit] See also

Look up injective in Wiktionary, the free dictionary.

[edit] Notes

  1. ^ This principle is valid in conventional mathematics, but may fail in constructive mathematics. For instance, a left inverse of the inclusion {0,1} → R of the two-element set in the reals violates indecomposability by giving a retraction of the real line to the set {0,1}.

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -