See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Электронно-лучевая трубка — Википедия

Электронно-лучевая трубка

Материал из Википедии — свободной энциклопедии

Принципиальная схема одного из видов ЭЛТ
Принципиальная схема одного из видов ЭЛТ

Электро́нно-лучева́я тру́бка[1] (ЭЛТ), кинеско́пэлектровакуумный прибор, преобразующий электрические сигналы в световые.

В строгом смысле, электронно-лучевыми трубками называют[2] ряд электронно-лучевых приборов, одним из которых является кинескоп.

Принципиальное устройство:

  • электронная пушка, предназначена для формирования электронного луча, в цветных кинескопах и многолучевых осциллографических трубках объединяются в электронно-оптический прожектор;
  • экран, покрытый люминофором — веществом, светящимся при попадании на него пучка электронов;
  • отклоняющая система, управляет лучом таким образом, что он формирует требуемое изображение.

Содержание

[править] История развития

В 1859 году Юлиус Плюккер открыл катодные лучи. В 1879 году Уильям Крукс создал прообраз электронной трубки, установил, что катодные лучи распространяются линейно, но могут отклоняться магнитным полем. Так же он обнаружил, что при попадании катодных лучей на некоторые вещества, последние начинают светиться.

В 1895 году немецкий физик Карл Фердинанд Браун на основе трубки Крукса создал катодную трубку, получившую названия трубки Брауна. Луч отклонялся магнитно только в одном измерении, второе направление развёртывалось при помощи вращающегося зеркала. Браун решил не патентовать свое изобретение, выступал со множеством публичных демонстраций и публикаций в научной печати.[3] Трубка Брауна использовалась и совершенствовалась многими учёными. В 1903 году Артур Венельт поместил в трубке цилиндрический электрод (цилиндр Венельта), позволяющий менять интенсивность электронного луча, а соответственно и яркость свечения люминофора.

В 1905 году Альберт Эйнштейн опубликовал уравнение внешнего фотоэффекта, открытого в 1877 году Генгихом Герцем, и исследованного Александром Григорьевичем Столетовым.

В 1906 году сотрудники Брауна М. Дикман и Г. Глаге получили патент на использование трубки Брауна для передачи изображений, а в 1909 году М. Дикман предложил в статье фототелеграфное устройство для передачи изображений с помощью трубки Брауна, в устройстве для развёртки применялся диск Нипкова.

С 1902 года c трубкой Брауна работает Борис Львович Розинг. 25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. В 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.

В начале и середине XX века значительную роль в развитии ЭЛТ сыграли Владимир Зворыкин, Аллен Дюмонт и другие.

[править] Устройство и принцип работы

[править] Общие принципы

Устройство чёрно-белого кинескопа
Устройство чёрно-белого кинескопа

В баллоне 9 создан глубокий вакуум — сначала выкачивается воздух, затем все металлические детали кинескопа нагреваются индуктором для выделения поглощённых газов, для постепенного поглощения остатков воздуха используется геттер.

Для того, чтобы создать электронный луч 2, применяется устройство, именуемое электронной пушкой. Катод 8, нагреваемый нитью накала 5, испускает электроны. Чтобы увеличить испускание электронов, катод покрывают веществом, имеющим малую работу выхода (крупнейшие производители ЭЛТ для этого применяют собственные запатентованные технологии). Изменением напряжения на управляющем электроде (модуляторе) 12 можно изменять интенсивность электронного луча и, соответственно, яркость изображения (также существуют модели с управлением по катоду). Кроме управляющего электрода, пушка современных ЭЛТ содержит фокусирующий электрод (до 1961 года в отечественных кинескопах применялась электромагнитная фокусировка при помощи фокусирующей катушки 3 с сердечником 11), предназначенный для фокусировки пятна на экране кинескопа в точку, ускоряющий электрод для дополнительного разгона электронов в пределах пушки и анод. Покинув пушку, электроны ускоряются анодом 14, представляющем собой металлизированное покрытие внутренней поверхности конуса кинескопа, соединённое с одноимённым электродом пушки. В цветных кинескопах со внутренним электростатическим экраном его соединяют с анодом. В ряде кинескопов ранних моделей, таких, как 43ЛК3Б, конус был выполнен из металла и представлял анод сам собой. Напряжение на аноде находится в пределах от 7 до 30 киловольт. В ряде малогабаритных осциллографических ЭЛТ представляет собой только один из электродов электронной пушки и питается напряжением до нескольких сот вольт.

Далее луч проходит через отклоняющую систему 1, которая может менять направление луча (на рисунке показана магнитная отклоняющая система). В телевизионных ЭЛТ применяется магнитная отклоняющая система как обеспечивающая большие углы отклонения. В осциллографических ЭЛТ применяется электростатическая отклоняющая система как обеспечивающая большее быстродействие.

Электронный луч попадает в экран 10, покрытый люминофором 4. От бомбардировки электронами люминофор светится и быстро перемещающееся пятно переменной яркости создаёт на экране изображение.

Люминофор от электронов приобретает отрицательный заряд, и начинается вторичная эмиссия — люминофор сам начинает испускать электроны. В результате вся трубка приобретает отрицательный заряд. Для того, чтобы этого не было, по всей поверхности трубки находится соединённый с общим проводом слой аквадага — проводящей смеси на основе графита (6).

Кинескоп подключается через выводы 13 и высоковольтное гнездо 7.

В чёрно-белых телевизорах состав люминофора подбирают таким, чтобы он светился нейтрально-серым цветом. В видеотерминалах, радарах и т. д. люминофор часто делают жёлтым или зелёным для меньшего утомления глаз.

[править] Угол отклонения луча

Углом отклонения луча ЭЛТ называется максимальный угол между двумя возможными положениями электронного луча внутри колбы, при которых на экране ещё видно светящееся пятно. От величины угла зависит отношение диагонали (диаметра) экрана к длине ЭЛТ. У осциллографических ЭЛТ составляет как правило до 40 градусов, что связано с необходимостью повысить чувствительность луча к воздействию отклоняющих пластин. У первых советских кинескопов с круглым экраном составлял 50 градусов, у чёрно-белых кинескопов более поздних выпусков был равен 70 градусам, начиная с 60-х годов увеличился до 110 градусов (один из первых подобных кинескопов -- 43ЛК9Б). У отечественных цветных кинескопов составляет 90 градусов.

[править] Ионный уловитель

Так как внутри ЭЛТ невозможно создать идеальный вакуум, внутри остаётся часть молекул воздуха. При столкновении с электронами из них образуются ион, которые, имея массу, многократно превышающую массу электронов, практически не отклоняются, постепенно выжигая люминофор в центре экрана и образуя так называемое ионное пятно. Для борьбы с этим до середины 60 гг. применялись ионная ловушка. В начале 60 гг. был разработан новый способ защиты люминофора: алюминирование экрана, кроме того позволившее вдвое повысить максимальную яркость кинескопа.

[править] Развёртка

Чтобы создать на экране изображение, электронный луч должен постоянно проходить по экрану с высокой частотой — не менее 25 раз в секунду. Этот процесс называется развёрткой. Есть несколько способов развёртки изображения.

[править] Растровая развёртка

Электронный луч проходит весь экран по строкам. Возможны два варианта:

[править] Векторная развёртка

Электронный луч проходит вдоль линий изображения.

См. также: Vectrex — единственная игровая консоль с векторной развёрткой.

[править] Развёртка на экране радара

Электронный луч проходит вдоль радиусов экрана. Служебная информация (карта, надписи) дополнительно развёртывается растровым или векторным способом.

[править] Цветные кинескопы

Устройство цветного кинескопа. 1 —Электронные пушки. 2 — Электронные лучи. 3 — Фокусирующая катушка. 4 — Отклоняющие катушки. 5 — Анод. 6 — Маска, благодаря которой красный луч попадает на красный люминофор, и т.д. 7 — Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).
Устройство цветного кинескопа. 1 —Электронные пушки. 2 — Электронные лучи. 3 — Фокусирующая катушка. 4 — Отклоняющие катушки. 5 — Анод. 6 — Маска, благодаря которой красный луч попадает на красный люминофор, и т.д. 7 — Красные, зелёные и синие зёрна люминофора. 8 - Маска и зёрна люминофора (увеличенно).

Цветной кинескоп отличается от чёрно-белого тем, что в нём три пушки — «красная», «зелёная» и «синяя» (1). Соответственно, на экран 7 нанесены в некотором порядке три вида люминофора — красный, зелёный и синий (8).

На красный люминофор попадает только луч от красной пушки, на зелёный — только от зелёной, и т. д. Это достигается тем, что между пушками и экраном установлена металлическая решётка, именуемая маской (6). Маска делается из инвара — сорта стали с небольшим коэффициентом температурного расширения.

[править] Типы масок

Существует два типа масок:

  • собственно теневая маска. Бывает двух видов:
    • Теневая маска для кинескопов с дельтаобразным расположением электронных пушек. Часто, особенно в переводной литературе, упоминается как теневая решётка (встречается в кинескопах большинства производителей);
    • Теневая маска для кинескопов с планарным расположением электронных пушек. Известна также, как щелевая решётка (LG Flatron).
  • апертурная решётка (Sony Trinitron, Mitsubishi Diamondtron). Эта маска, в отличие от остальных видов, состоит из большого количества проволок, натянутых вертикально;

Среди этих масок нет явного лидера: теневая обеспечивает высокое качество линий, апертурная даёт более насыщенные цвета. Щелевая сочетает достоинства теневой и апертурной, но склонна к муарам.

Типы решёток, способы замера шага на них
Типы решёток, способы замера шага на них

Чем меньше элементы люминофора, тем более высокое качество изображения способна дать трубка. Показателем качества изображения является шаг маски.

  • Для теневой решётки шаг маски — расстояние между двумя ближайшими отверстиями маски (соответственно, расстояние между двумя ближайшими элементами люминофора одного цвета).
  • Для апертурной и щелевой решётки шаг маски определяется как расстояние по горизонтали между щелями маски (соответственно, горизонтальное расстояние между вертикальными полосами люминофора одного цвета).

В современных ЭЛТ шаг маски находится на уровне 0,25 мм.

[править] Сведение лучей

Основная статья: Сведение лучей

Так как радиус кривизны экрана много больше расстояния от него до электронно-оптической системы вплоть до бесконечности в плоских кинескопах, а без применения специальных мер точка пересечения лучей цветного кинескопа находится на постоянном расстоянии от электронных пушек, необходимо добиться того, чтобы эта точка находилась точно на поверхности теневой маски, в противном случае образуется рассовмещение трёх цветовых составляющих изображения, увеличивающееся от центра экрана к краям. Чтобы этого не происходило, необходимо должным образом сместить электронные лучи. В кинескопах с дельтаобразным расположением пушек это делается специальной электромагнитной системой, управляемой отдельно устройством, которое в старых телевизорах была вынесена в отдельный блок — блок сведения — для периодических регулировок. В кинескопах с планарным расположением пушек регулировка производится при помощи специальных магнитов, расположенных на горловине кинескопа. Со временем, особенно у кинескопов с дельтаобразным расположением электронных пушек, сведение нарушается и нуждается в дополнительной регулировке. Большинство компаний по ремонту компьютеров предлагают услугу повторного сведения лучей монитора.

[править] Размагничивание

Необходимо в цветных кинескопах для снятия влияющей на качество изображения остаточной или случайной намагниченности теневой маски и электростатического экрана. Размагничивание происходит благодаря возникновению в так называемой петле размагничивания — кольцеобразной гибкой катушке большого диаметра, расположенной на поверхности кинескопа — импульса быстропеременного затухающего магнитного поля.

[править] Применение

Кинескопы используются в системах растрового формирования изображения: различного рода телевизорах, мониторах, видеосистемах. Осциллографические ЭЛТ наиболее часто используются в системах отображения функциональных зависимостей: осциллографах, вобулоскопах, также в качестве устройства отображения на радиолокационных станциях, в устройствах специального назначения; в советские годы использовались и в качестве наглядных пособий при изучении устройства электроннолучевых приборов в целом. Знакопечатающие ЭЛТ используются в различной аппаратуре специального назначения.

[править] Обозначение и маркировка

Обозначение отечественных ЭЛТ состоит из четырёх элементов:

  • Первый элемент: число, указывающее диагональ прямоугольного либо диаметр круглого экрана в сантиметрах
  • Второй элемент: ЛК — кинескоп, ЛО — трубка осциллографическая
  • Третий элемент: число, указывающие номер модели данной трубки с данной диагональю
  • Четвёртый элемент: буква, указывающая тип покрытия экрана: Ц — мозаичный цветной, Б — белого свечения, И — зелёного свечения.

В особых случаях к обозначению может добавляться пятый элемент, несущий дополнительную информацию.

Пример: 50ЛК2Б — чёрно-белый кинескоп с диагональю экрана 50 см, вторая модель, 3ЛО1И — осциллографическая трубка с диаметром экрана зелёного свечения 3 см, первая модель.

[править] Воздействие на здоровье

[править] Электромагнитное излучение

[править] Ионизирующее излучение

[править] Мерцание

Монитор Mitsubishi Diamond Pro 750SB (1024x768, 100 Гц), снятый с выдержкой 1/1000 с. Яркость искусственно завышена; показана реальная яркость изображения в разных точках экрана.
Монитор Mitsubishi Diamond Pro 750SB (1024x768, 100 Гц), снятый с выдержкой 1/1000 с. Яркость искусственно завышена; показана реальная яркость изображения в разных точках экрана.

Луч ЭЛТ-монитора, формируя изображение на экране, заставляет светиться частицы люминофора. До момента формирования следующего кадра эти частицы успевают погаснуть, поэтому можно наблюдать «мерцание экрана». Чем выше частота смены кадров, тем менее заметно мерцание. Низкая частота ведет к усталости глаз и наносит вред здоровью.

У большинства телевизоров на базе электронно-лучевой трубки ежесекундно сменяется 25 кадров, что с учётом чересстрочной развёртки составляет 50 полей (полукадров) в секунду (Гц). В современных моделях телевизоров эта частота искусственно завышается до 100 герц. При работе за экраном монитора мерцание чувствуется сильнее, так как при этом расстояние от глаз до кинескопа намного меньше, чем при просмотре телевизора. Минимальной рекомендуемой частотой обновления экрана монитора является частота не менее 85 герц. Ранние модели мониторов не позволяют работать с частотой развёртки более 70—75 Гц. Мерцание ЭЛТ явно можно наблюдать боковым зрением.

[править] Нечёткое изображение

[править] Высокое напряжение

В работе ЭЛТ применяется высокое напряжение. Остаточное напряжение в сотни вольт, если не принимать никаких мер, может задерживаться на ЭЛТ и схемах «обвязки» неделями. Поэтому в схемы добавляют разряжающие резисторы, которые делают телевизор вполне безопасным уже через несколько минут после выключения.

Вопреки распространённому мнению, анодом ЭЛТ нельзя убить человека из-за небольшой мощности преобразователя напряжения — будет лишь ощутимый удар. Однако, напряжения и токи в отклоняющих и питающих схемах вполне способны убить человека.

[править] Ядовитые вещества

Любая электроника (в том числе ЭЛТ) содержит вещества, вредные для здоровья и окружающей среды. В числе их: свинцовое стекло, соединения бария в катодах, люминофоры.

Использованные ЭЛТ в большинстве стран считаются опасным мусором, и подлежат вторичной переработке или захоронению на отдельных полигонах.

[править] Взрыв ЭЛТ

Поскольку внутри ЭЛТ вакуум, за счёт давления воздуха на один только экран 17-дюймового монитора приходится нагрузка около 800 кГ — вес легкового автомобиля. Из-за особенностей конструкции давление на экран и конус ЭЛТ является положительным, а на боковую часть экрана — отрицательным, что вызывает опасность взрыва. При работе с ранними моделями кинескопов правила техники безопасности требовали использования защитных рукавиц, маски и очков. Перед экраном кинескопа в телевизоре устанавливался стеклянный защитный экран, а по краям — металлическая защитная маска.

Начиная со второй половины 60-х годов опасная часть кинескопа прикрывается специальным металлическим взрывозащитным бандажом, выполненным в виде цельнометаллической штампованной конструкции либо намотанной в несколько слоёв ленты. Такой бандаж исключает возможность самопроизвольного взрыва. В некоторых моделях кинескопов дополнительно использовалась защитная плёнка, покрывавшая экран.

Несмотря на применение защитных систем, не исключается поражение людей осколками при умышленном разбивании кинескопа. В связи с этим при уничтожении последнего для безопасности предварительно разбивают штенгель — технологическую стеклянную трубку в торце горловины под пластмассовым цоколем, через которую при производстве осуществляется откачка воздуха.

Малогабаритные ЭЛТ и кинескопы с диаметром или диагональю экрана до 15 см опасности не представляют и взрывозащитными приспособлениями не оснащаются.

[править] Другие виды электроннолучевых приборов

Кроме кинескопа, к электроннолучевым приборам относят:

  • Квантоскоп (лазерный кинескоп), разновидность кинескопа, экран которого представляет собой полупроводниковый лазер, накачиваемый электронным лучом. Квантоскопы применяются в проекторах изображения.
  • Осциллографическая электроннолучевая трубка.
  • Знакопечатающая электроннолучевая трубка.
  • Индикаторная электроннолучевая трубка используются в индикаторах радиолокационных станциий.
  • Запоминающая электроннолучевая трубка.
  • Передающая телевизионная трубка преобразует световые изображения в электрические сигналы.
  • Моноскоп передающая электронно-лучевая трубка, преобразующая единственное изображение, выполненное непосредственно на фотокатоде в электрический сигнал. Применяелся для передачи изображения телевизионной испытательной таблицы.
  • Кадроскоп электронно-лучевая трубка с видимым изображением, предназначенная для настройки блоков разверток в аппаратуре, использующей электронно-лучевые трубки без видимого изображения (графеконы, моноскопы, потенциалоскопы). Кадроскоп имеет цоколевку и привязочные размеры, аналогичные электронно-лучевой трубке, используемой в аппаратуре. При настройке вместо основной трубки подключают кадроскоп.

[править] См. также

[править] Ссылки

[править] Примечания

  1. Орфографический словарь под редакций Лопатина указывает, что слово «электронно-лучевой» пишется через дефис, но в некоторых источниках, например БСЭ, используется и слитное написание
  2. Статья «Электроннолучевая трубка» в Большой советской энциклопедии
  3. А. И. Климин, В. А. Урвалов. Фердинанд Браун - лауреат нобелевской премии в области физики // «Электросвязь» № 8, 2000 г. (на сайте «Виртуальный компьютерный музей»)


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -