See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Разделение изотопов — Википедия

Разделение изотопов

Материал из Википедии — свободной энциклопедии

Разделение изотопов — технологический процесс, в котором из материала, состоящего из смеси различных изотопов одного химического элемента, выделяются отдельные изотопы этого элемента. Основное применение процесса разделения изотопов — производство ядерного топлива, оружейных радиоактивных материалов и прочие приложения, связанные с использованием радиоактивных веществ. В таких случаях разделение обычно преследует цель обогащения или обеднения материала определёнными радиоактивными изотопами.

Содержание

[править] Общие принципы

Разделение изотопов (например извлечение Li-6, U-235, D) всегда сопряжено со значительными трудностями, ибо изотопы, представляющие собой чуть отличающиеся по массе вариации одного элемента, химически ведут себя практически одинаково. Но — скорость прохождения некоторых реакций отличается в зависимости от изотопа элемента, кроме того, можно использовать различие в их физических свойствах — например в массе.

Как бы то ни было, различии в поведении изотопов настолько малы, что за одну стадию разделения, вещество обогащается на сотые доли процента и повторять процесс разделения приходится снова и снова — огромное количество раз.

На производительность подобной каскадной системы влияют две причины: степень обогащения на каждой из ступеней и потери искомого изотопа в отходном потоке.

Поясним второй фактор. На каждой из стадий обогащения поток разделяется на две части — обогащенную и обедненную нужным изотопом. Поскольку степень обогащения чрезвычайно низка, суммарная масса изотопа в отработанной породе может легко превысить его массу в обогащенной части. Для исключения такой потери ценного сырья обедненный поток каждой последующей ступени попадает снова на вход предыдущей.

Исходный материал не поступает на первую стадию каскада. Он вводится в систему сразу на некоторую, n-ю ступень. Благодаря этому с первой ступени выводится в утиль сильно обедненный по основному изотопу материал.

[править] Основные используемые методы разделения изотопов

  • Электромагнитное разделение
  • Газовая диффузия
  • Жидкостная термодиффузия
  • Газовое центрифугирование
  • Аэродинамическая сепарация
  • AVLIS (испарение с использованием лазера)
  • Химическое обогащение
  • Дистилляция
  • Электролиз
  • Фотохимическое разделение

В любом случае, количество произведенного обогащенного материала зависит от желаемой степени обогащения и обеднения выходных потоков. Если исходное вещество имеется в большом количестве и дешево, то производительность каскада можно увеличить за счет отбрасывания вместе с отходами и большого количества неизвлеченного полезного элемента (пример — производство дейтерия из обычной воды). При необходимости достигается большая степень извлечения изотопа из материала-сырца (например, при обогащении урана или плутония).

[править] Электромагнитное разделение

Метод электромагнитного разделения основан на различном действии магнитного поля на одинаково электрически заряженные частицы различной массы. По сути дела такие установки, называемые калютронами, являются огромными масс-спектрометрами. Ионы разделяемых веществ, двигаясь в сильном магнитном поле, закручиваются с радиусами, пропорциональными их массам и попадают в приемники, где и накапливаются.

Этот метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Обычно достаточно двух проходов для получения степени обогащения выше 80% из бедного вещества (с исходным содержанием желаемого изотопа менее 1%). Однако электромагнитное разделение плохо приспособлено для промышленного производства: большая часть веществ осаждается внутри калютрона, так что его приходится периодически останавливать на обслуживание. Остальные недостатки — большое энергопотребление, сложность и дороговизна технического обслуживания, низкая производительность. Основная сфера применения метода — получение небольших количеств чистых изотопов для лабораторного применения. Тем не менее, во время второй мировой войны была построена установка Y-12, вышедшая с января 1945 на мощность 204 грамм 80% U-235 в день.

[править] Газовая диффузия

Этот метод использует различие в скоростях движения различных по массе молекул газа. Понятно, что он будет подходить только для веществ, находящихся в газообразном состоянии. При различных скоростях движения молекул, если заставить их двигаться через тонкую трубочку, более быстрые и легкие из них обгонят более тяжелые. Для этого трубка должна быть настолько тонка, чтобы молекулы двигались по ней поодиночке. Таким образом, ключевой момент здесь — изготовление пористых мембран для разделения. Они должны не допускать утечек, выдерживать избыточное давление.

Для некоторых легких элементов степень разделения может быть достаточно велика, но для урана — только 1.00429 (выходной поток каждой ступени обогащается в 1.00429 раза). Поэтому газодиффузионные обогатительные предприятия — циклопические по размерам, состоящие из тысяч ступеней обогащения.

[править] Жидкостная термодиффузия

В этом случае опять же, используется различие в скоростях движения молекул. Более легкие из них при существовании разницы температуры имеют свойство оказываться в более нагретой области. Коэффициент разделения зависит от отношения разницы массы изотопов к общей массе и больший для легких элементов. Несмотря на свою простоту, в этом методе требуются большие энергозатраты для создания и поддержания нагрева. Поэтому широко не применяется.

[править] Газовое центрифугирование

Впервые эта технология была разработана в Германии, во время второй мировой, но промышленно нигде не применялась до начала 50-х. Если газообразную смесь изотопов пропускать через высокоскоростные центрифуги, то центробежная сила разделит более легкие или тяжелые частицы на слои, где их и можно будет собрать. Большое преимущество центрифугирования состоит в зависимости коэффициента разделения от абсолютной разницы в массе, а не от отношения масс. Центрифуга одинаково хорошо работает и с легкими, и с тяжелыми элементами. Степень разделения пропорциональна квадрату отношения скорости вращения к скорости молекул в газе. Отсюда очень желательно как можно быстрее раскрутить центрифугу. Типичные линейные скорости вращающихся роторов — 250—350 м/с, и более 600 м/с в усовершенствованных центрифугах.

Типичный коэффициент сепарации — 1.01 — 1.1. По сравнению с газодиффузионными установками этот метод имеет уменьшенное энергопотребление, большую легкость в наращивании мощности. В настоящее время газовое центрифугирование — основной метод разделения изотопов в России.

[править] Аэродинамическая сепарация

Этот способ можно рассматривать как вариант центрифугирования, но вместо закручивания газа в центрифуге, он завихряется при выходе из специальной форсунки, куда подается под давлением. Эта технология, основанная на вихревом эффекте, использовалась ЮАР и Германией.

[править] AVLIS (испарение с использованием лазера)

Различные изотопы поглощают свет с немного различной длиной волны. При помощи точно настроенного лазера можно избирательно ионизировать атомы какого-то определенного изотопа. Получившиеся ионы можно легко отделить, допустим, магнитным полем. Такая технология имеет чрезвычайную эффективность, однако в промышленных масштабах пока не применяется. Технология, разрабатываемая в США, но до сих пор не развита далее опытных образцов. Имеет большой недостаток, а именно трудность в перестройке аппаратуры с одного изотопа на другой.

[править] Химическое обогащение

Химическое обогащение использует разницу в скорости протекания химических реакций с различными изотопами. Лучше всего оно работает при разделении легких элементов, где разница значительна. В промышленном производстве применяются реакции, идущие с двумя реактивами, находящимися в различных фазах (газ/жидкость, жидкость/твердое вещество, несмешивающиеся жидкости). Это позволяет легко разделять обогащенный и обедненный потоки. Используя дополнительно разницу температур между фазами, достигается дополнительный рост коэффициента разделения. На сегодня химическое разделение — самая энергосберегающая технология получения тяжелой воды. Кроме производства дейтерия, оно применяется для извлечения Li-6. Во Франции и Японии разрабатывались методы химического обогащения урана, так и не дошедшие до промышленного освоения.

[править] Дистилляция

Дистилляция (перегонка) использует различие в темрературах кипения различных по массе изотопов. Обычно чем меньше масса атома — тем ниже температура кипения этого изотопа. Лучше всего это работает опять же, на легких элементах. Дистилляция успешно применяется для производства тяжелой воды.

[править] Электролиз

Единственная сфера применения электролиза — производство тяжёлой воды. При электролизе воды разделяются на газы в основном «легкие» молекулы (с обычным водородом). Этот самый эффективный метод получения дейтерия (коэффициент разделения более 7) требует такого количества энергии, что по экономическим соображениям, если он и задействуется, то на поздних стадиях очистки.

[править] См. также

[править] Ссылки


На других языках


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -