See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Основная теорема арифметики — Википедия

Основная теорема арифметики

Материал из Википедии — свободной энциклопедии

Основна́я теоре́ма арифме́тики утверждает:

Каждое натуральное число n > 1 представляется в виде n=p_1\cdot\dots\cdot p_k, где p_1,\dots,p_k простые числа, причём такое представление единственно с точностью до порядка следования сомножителей.

Единицу можно также считать произведением нулевого количества простых чисел, «пустым произведением».

Как следствие, каждое натуральное число n единственным образом представимо в виде n=p_1^{d_1}\cdot\dots\cdot p_k^{d_k}, где p_1 < \dots < p_k — простые числа, и d_1,\dots,d_k — некоторые натуральные числа.

[править] Следствия

[править] Доказательство

Доказательство основной теоремы арифметики опирается на так называемую лемму Евклида:

Если простое число p делит без остатка произведение двух целых чисел x \cdot y, то p делит x или y.

Существование. Пусть n — наименьшее натуральное число, неразложимое в произведение простых чисел. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если n составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел, значит, n тоже является произведением простых чисел. Противоречие.

Единственность. Пусть n — наименьшее натуральное число, разложимое в произведение простых чисел двумя разными способами. Если оба разложения пустые — они одинаковы. В противном случае, пусть p — любой из сомножителей в любом из двух разложений. Если p входит и в другое разложение, мы можем сократить оба разложения на p и получить два разных разложения числа n / p, что невозможно. А если p не входит в другое разложение, то одно из произведений делится на p, а другое — не делится (как следствие из леммы Евклида, см. выше), что противоречит их равенству.

[править] Ссылки


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -