See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Матрично-активированная лазерная десорбция/ионизация (MALDI) — Википедия

Матрично-активированная лазерная десорбция/ионизация (MALDI)

Материал из Википедии — свободной энциклопедии

Матрично-активированная лазерная десорбция/ионизация, МАЛДИ — (от англ. MALDI, Matrix Assisted Laser Desorption/Ionization — десорбционный метод «мягкой» ионизации, обусловленной воздействием импульсами лазерного излучения на матрицу с анализируемым веществом. Матрица представляет собой материал, свойства которого обусловливают понижение деструктивных свойств лазерного излучения и ионизацию анализируемого вещества. МАЛДИ масс-спектрометрия находит свое широкое применение для анализа нелетучих выскомолекулярных соединений (пептиды, белки, углеводы, олигонуклеотиды и др.)

Впервые возможность применения матрицы для подавления фрагментации при анализе нелетучих органических соединений на примере белков и пептидов была продемонстрирована в 1987 году группой ученых в Германии (M. Karas and F. Hillenkamp)[1].

Обычно используется в сочетании с времяпролетным масс-анализатором. Таким образом, верхний рубеж определяемых масс ограничивается пропускаемой способностью анализатора (около 1MDa). Чувствительность метода: << 1 фемтомоль.

Содержание

[править] Матрица

Считается, что вещество, используемое в качестве матрицы, должно отвечать следующим основным требованиям:

1) обладать высоким коэффициентом экстинкции при длине волны лазерного излучения;
2) иметь способность к ионизации нейтральных молекул анализируемого вещества путем переноса заряда или заряженной частицы;
3) обладать хорошей растворимостью в растворителях, применяемых в процессе пробоподготовки;
4) быть химически инертным по отношению к анализируемому веществу;
5) иметь низкую летучесть и термическую устойчивость.

Стоит указать на селективность в выборе матричных соединений по отношению к классу анализируемых соединений. Во многом это определяется различной природой механизмов образования ионов анализируемого вещества. Как правило, доминирующим процессом в их образовании являются процессы вторичной ионизации, а именно ион-молекулярные взаимодействия между матричными ионами и молекулами анализируемого вещества. Иными словами, вторичная ионизация может происходить за счет таких процессов, как перенос протона (Н+), заряженной частицы в виде электрона (e), металл-катионов (Na+, Ag+ и др.).

Например, существует широко распространенная группа кислотных матриц для анализа белков и пептидов: 2,5-дигидроксибензойная кислота, различные производные коричной (β-фенилакриловой) кислот и т. д. Пептиды и белки, как правило, обладают высокими значениями сродства к протону от 900 кДж/моль и более. Эти значения превышают величины сродства к протону матричных соединений (870–910 кДж/моль), в результате чего реакция переноса протона является экзотермической:

А + МН+ → М + АН+, где А – молекула анализируемого вещества, М – матричная молекула.

Другой путь образования ионов происходит путем переноса электрона (процесс перезарядки), конечным результатом которого является образование молекулярного радикал-катиона:

А + М+• → А+• + М.

Это наиболее эффективный способ образования положительных ионов для неполярных соединений с низкими значениями энергии ионизации.


[править] Механизм ионизации

Схематическое представление механизма МАЛДИ
Схематическое представление механизма МАЛДИ
  • При облучении лазером с длительностью импульса несколько наносекунд и высокими величинами интенсивности излучения (106 — 107 Вт/см²) из образца, представляющего собой твердый раствор или смесь анализируемого вещества и матрицы, происходит выброс материала в виде микрочастиц. Такие частицы могут достигать размеров несколько сотен микрометров. Над поверхностью образца возникает область высокого локального давления — так называемый факел (от англ. англ. plume — факел, шлейф, султан, который преимущественно состоит из нейтральных частиц. Вместе с тем, в нем присутствуют и заряженные частицы, доля которых по разным оценкам составляет 10-5—10-3 от полного числа всех частиц. На начальном этапе образования факела его плотность близка к плотности вещества в конденсированном состоянии.
  • C расширением факела (в первые наносекунды) происходит распад конгломератов вплоть до образования отдельных молекул или их фрагментов, а также заряженных (преимущественно матричных) частиц. Ионизацию молекул, происходящую непосредственно при выбросе материала из конденсированного состояния, принято рассматривать как первичную.
  • В расширяющемся факеле происходят непрерывные соударения между частицами, в том числе возможны ион-молекулярные реакции между матричными заряженными частицами и молекулами анализируемого вещества, которые приводят к ионизации последнего. Такого рода ионизацию относят к вторичной.

[править] Применение

Диапазон применения МАЛДИ достаточно широк и охватывает многие классы химических соединений

  1. Биоорганические соединения (пептиды, белки, олигонуклеотиды, олигосахариды и т. п.);
  2. синтетические полимеры;
  3. органические комплексные соединения;
  4. высокомолекулярные материалы;
  5. синтетические дендримеры, фуллерены и др.
  1. Протеомика

[править] См. также

Guide to Sample Preparation with FLUKA products and Sigma Calibration Kits(англ.)

[править] Ссылки

  1. Karas M., Bachmann D., Bahr D. and Hillenkamp F. “Matrix-assisted ultraviolet-laser desorption of nonvolatile compounds” // Int. J. Mass Spectrom. Ion Proc.. — 1987. — № 78. — С. 53-68.
На других языках


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -