Классификация (машинное обучение)
Материал из Википедии — свободной энциклопедии
Классифика́ция — один из разделов машинного обучения, посвященный решению следующей задачи. Имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется обучающей выборкой. Классовая принадлежность остальных объектов не известна. Требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества.
Классифици́ровать объект — значит, указать номер (или наименование класса), к которому относится данный объект.
Классифика́ция объекта — номер или наименование класса, выдаваемый алгоритмом классификации в результате его применения к данному конкретному объекту.
В математической статистике задачи классификации называются также задачами дискриминантного анализа.
В машинном обучении задача классификации относится к разделу обучения с учителем. Существует также обучение без учителя, когда разделение объектов обучающей выборки на классы не задаётся, и требуется классифицировать объекты только на основе их сходства друг с другом. В этом случае принято говорить о задачах кластеризации или таксономии, и классы называть, соответственно, кластерами или таксонами. В некоторых прикладных областях, и даже в самой математической статистике, существует тенденция называть задачи кластеризации задачами классификации.
Содержание |
[править] Типология задач классификации
[править] Типы входных данных
- Признаковое описание — наиболее распространённый случай. Каждый объект описывается набором своих характеристик, называемых признаками. Признаки могут быть числовыми или нечисловыми.
- Матрица расстояний между объектами. Каждый объект описывается расстояниями до всех остальных объектов обучающей выборки. С этим типом входных данных работают немногие методы, в частности, метод ближайших соседей, метод парзеновского окна, метод потенциальных функций.
- Временной ряд или сигнал представляет собой последовательность измерений во времени. Каждое измерение может представляться числом, вектором, а в общем случае — признаковым описанием исследуемого объекта в данный момент времени.
- Изображение или видеоряд.
- Встречаются и более сложные случаи, когда входные данные представляются в виде графов, текстов, результатов запросов к базе данных, и т. д. Как правило, они приводятся к первому или второму случаю путём предварительной обработки данных и извлечения признаков.
Классификацию сигналов и изображений называют также распознаванием образов.
[править] Типы классов
- Двухклассовая классификация. Наиболее простой в техническом отношении случай, который служит основой для решения более сложныхзадач.
- Многоклассовая классификация. Когда число классов достигает многих тысяч (например, при распознавании иероглифов или слитной речи), задача классификации становится существенно более трудной.
- Непересекающиеся классы.
- Пересекающиеся классы. Объект может относиться одновременно к нескольким классам.
- Нечёткие классы. Требуется определять степень принадлежности объекта каждому из классов, обычно это действительное число от 0 до 1.
[править] Классификация: формальная постановка
Пусть — множество описаний объектов, — множество номеров (или наименований) классов. Существует неизвестная целевая зависимость — отображение , значнения которой известны только на объектах конечной обучающей выборки . Требуется построить алгоритм , способный классифицировать произвольный объект .
[править] Вероятностная постановка задачи
Более общей считается вероятностная постановка задачи. Предполагается, что множество пар «объект, класс» является вероятностным пространством с неизвестной вероятностной мерой . Имеется конечная обучающая выборка наблюдений , сгенерированная согласно вероятностной мере . Требуется построить алгоритм , способный классифицировать произвольный объект .
[править] Признаковое пространство
Признаком называется отображение , где — множество допустимых значений признака. Если заданы признаки , то вектор называется признаковым описанием объекта . Признаковые описания допустимо отождествлять с самими объектами. При этом множество называют признаковым пространством.
В зависимости от множества Df признаки делятся на следующие типы:
- бинарный признак: Df = {0,1};
- номинальный признак: Df — конечное множество;
- порядковый признак: Df — конечное упорядоченное множество;
- количественный признак: Df — множество действительных чисел.
Часто встречаются прикладные задачи с разнотипными признаками, для их решения подходят далеко не все методы.
[править] Примеры прикладных задач
[править] Задачи медицинской диагностики
В роли объектов выступают пациенты. Признаки характеризуют результаты обследований, симптомы заболевания и применявшиеся методы лечения. Примеры бинарных признаков: пол, наличие головной боли, слабости. Порядковый признак — тяжесть состояния (удовлетворительное, средней тяжести, тяжёлое, крайне тяжёлое). Количественные признаки — возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата. Признаковое описание пациента является, по сути дела, формализованной историей болезни. Накопив достаточное количество прецедентов в электронном виде, можно решать различные задачи:
- классифицировать вид заболевания (дифференциальная диагностика);
- определять наиболее целесообразный способ лечения;
- предсказывать длительность и исход заболевания;
- оценивать риск осложнений;
- находить синдромы — наиболее характерные для данного заболевания совокупности симптомов.
Ценность такого рода систем в том, что они способны мгновенно анализировать и обобщать огромное количество прецедентов — возможность, недоступная специалисту-врачу.
[править] Предсказание месторождений полезных ископаемых
Признаками являются данные геологической разведки. Наличие или отсутствие тех или иных пород на территории района кодируется бинарными признаками. Физико-химические свойства этих пород могут описываться как количественными, так и качественными признаками. Обучающая выборка составляется из прецедентов двух классов: районов известных месторождений и похожих районов, в которых интересующее ископаемое обнаружено не было. При поиске редких полезных ископаемых количество объектов может оказаться намного меньше, чем количество признаков. В этой ситуации плохо работают классические статистические методы. Задача решается путём поиска закономерностей в имеющемся массиве данных. В процессе решения выделяются короткие наборы признаков, обладающие наибольшей информативностью — способностью наилучшим образом разделять классы. По аналогии с медицинской задачей, можно сказать, что отыскиваются «синдромы» месторождений. Это важный побочный результат исследования, представляющий значительный интерес для геофизиков и геологов.
[править] Оценивание кредитоспособности заёмщиков
Эта задача решается банками при выдаче кредитов. Потребность в автоматизации процедуры выдачи кредитов впервые возникла в период бума кредитных карт 60-70-х годов в США и других развитых странах. Объектами в данном случае являются физические или юридические лица, претендующие на получение кредита. В случае физических лиц признаковое описание состоит из анкеты, которую заполняет сам заёмщик, и, возможно, дополнительной информации, которую банк собирает о нём из собственных источников. Примеры бинарных признаков: пол, наличие телефона. Номинальные признаки — место проживания, профессия, работодатель. Порядковые признаки — образование, занимаемая должность. Количественные признаки — сумма кредита, возраст, стаж работы, доход семьи, размер задолженностей в других банках. Обучающая выборка составляется из заёмщиков с известной кредитной историей. В простейшем случае принятие решений сводится к классификации заёмщиков на два класса: «хороших» и «плохих». Кредиты выдаются только заёмщикам первого класса. В более сложном случае оценивается суммарное число баллов (score(англ.)) заёмщика, набранных по совокупности информативных признаков. Чем выше оценка, тем более надёжным считается заёмщик. Отсюда и название — кредитный скоринг. На стадии обучения производится синтез и отбор информативных признаков и определяется, сколько баллов назначать за каждый признак, чтобы риск принимаемых решений был минимален. Следующая задача — решить, на каких условиях выдавать кредит: определить процентную ставку, срок погашения, и прочие параметры кредитного договора. Эта задача также может быть решения методами обучения по прецедентам.
[править] Предсказание оттока клиентов
[править] Оптическое распознавание символов
[править] Распознавание речи
[править] Обнаружение спама
[править] Классификация документов
[править] Методы решения
- Байесовский классификатор:
- квадратичный классификатор;
- линейный дискриминант Фишера;
- наивный байесовский классификатор;
- метод парзеновского окна;
- разделение смеси вероятностных распределений (EM-алгоритм);
- метод потенциальных функций или метод радиальных базисных функций;
- метод ближайших соседей.
- Нейронная сеть:
- персептрон;
- многослойный персептрон;
- гибридная сеть встречного распространения;
- Линейный разделитель:
- линейный дискриминант Фишера;
- наивный байесовский классификатор;
- однослойный персептрон;
- логистическая регрессия;
- машина опорных векторов.
- Индукция правил:
- решающее дерево;
- решающий список;
- решающий лес;
- тестовый алгоритм;
- алгоритм вычисления оценок.
- Алгоритмическая композиция:
- взвешенное голосование;
- бустинг;
- бэггинг;
- метод комитетов;
- смесь экспертов.
- Сокращение размерности:
- селекция признаков;
- метод главных компонент;
- метод независимых компонент;
- многомерное шкалирование.
- Выбор модели:
- минимизация эмпирического риска;
- структурная минимизация риска;
- минимум длины описания;
- скользящий контроль;
- извлечение признаков
- самоорганизация моделей;
- случайный поиск с адаптацией;
- генетический алгоритм.
[править] Ссылки
- www.MachineLearning.ru — профессиональный вики-ресурс, посвященный машинному обучению и интеллектуальному анализу данных
- Константин Воронцов. Курс лекций Математические методы обучения по прецедентам, МФТИ, 2004-2008
- Юрий Лифшиц. Автоматическая классификация текстов (Слайды) - лекция №6 из курса «Алгоритмы для Интернета»
[править] Литература
- Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
- Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
- Журавлев Ю. И., Рязанов В. В., Сенько О. В. «Распознавание». Математические методы. Программная система. Практические применения. — М.: Фазис, 2006. ISBN 5-7036-0108-8.
- Загоруйко Н. Г. Прикладные методы анализа данных и знаний. — Новосибирск: ИМ СО РАН, 1999. ISBN 5-86134-060-9.
- Шлезингер М., Главач В. Десять лекций по статистическому и структурному распознаванию. — Киев: Наукова думка, 2004. ISBN 966-00-0341-2.
- Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. — Springer, 2001. ISBN 0-387-95284-5.
- Mitchell T. Machine Learning. — McGraw-Hill Science/Engineering/Math, 1997. ISBN 0-07-042807-7.
Это незавершённая статья по математике. Вы можете помочь проекту, исправив и дополнив её. |