ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Programa de Hilbert - Wikipédia, a enciclopédia livre

Programa de Hilbert

Origem: Wikipédia, a enciclopédia livre.

O Programa de Hilbert foi uma proposta, feita em 1921 pelo matemático alemão David Hilbert, de reformular as bases da matemática de forma rigorosa, partindo da aritmética. Segundo ele, toda a matemática poderia ser reduzida a um número finito de axiomas consistentes. Assim, qualquer proposição da matemática poderia ser provada dentro desse sistema (e o sistema seria dito completo).

Em 1931, o matemático Kurt Gödel provou, através do se Teorema da incompletude, que esta tarefa era impossível. No teorema, Gödel mostra que um sistema axiomático consistente não pode provar sua própria consistência. Assim, se um sistema axiomático consegue provar sua própria consistência, ele só pode ser inconsistente. Além disso, em sistemas com o poder de definir os números naturais (como o que Hilbert idealizou), sempre há proposições (chamadas de indecidíveis) que não podem ser provadas dentro do sistema (portanto o sistema é incompleto). Desta forma, o sistema não pode ser simultanemante completo e consistente, e a exigência hilbertiana de completude e consistência não pode ser colocada em prática.

Gödel deixou em aberto a possibilidade de existir um método geral para determinar se uma dada proposição é decidível. Em 1936, entretanto, o matemático Alan Turing provou que tal método não pode existir.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -