ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Número primo - Wikipédia, a enciclopédia livre

Número primo

Origem: Wikipédia, a enciclopédia livre.

Wikibooks
O Wikilivros possui livros e publicações sobre: Teoria de números/Números primos

Número primo é um número inteiro com apenas quatro divisores inteiros: 1, -1, seu oposto e ele mesmo. Por exemplo, o número 3 é um número primo pois seus dois únicos divisores inteiros são 1 e 3, -1 e -3. Se um número inteiro tem módulo maior que 1 e não é primo, diz-se que é composto. Os números 0 e 1 não são considerados primos nem compostos.

O conceito de número primo é muito importante na teoria dos números. Um dos resultados da teoria dos números é o Teorema Fundamental da Aritmética, que afirma que qualquer número natural pode ser escrito de forma única (desconsiderando a ordem) como um produto de números primos (chamados fatores primos): este processo se chama decomposição em fatores primos (fatoração).

Os 25 primeiros números primos positivos são:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97...

Exemplos de decomposições:

  • 4 = 2 \times 2
  • 6 = 2 \times 3
  • 8 = 2 \times 2 \times 2
  • 9 = 3 \times 3
  • 10 = 2 \times 5
  • 472.342.734.872.390.487 = 3 \times 7 \times 827 \times 978.491 \times 27.795.571


Índice

[editar] Os átomos da aritmética

Os gregos foram os primeiros a perceber que todo número podia ser gerado pela multiplicação de números primos, este blocos de construção para todos os números. A primeira pessoa, até onde se sabe, que produziu tabelas de números primos foi Eratóstenes, no terceiro século a.C. Ele escrevia inicialmente uma lista com todos os números de 1 a 1000. Em seguida escolhia o primeiro primo, 2, e eliminava da lista todos os seus múltiplos. Passava ao número seguinte que não fora eliminado e procedia também eliminando todos os seus múltiplos. Desta forma Erastótenes produziu tabelas de primos, mais tarde este procedimento passou a se chamar de crivo de Eratóstenes.

Durante o século XVII os matemáticos descobriram o que acreditavam ser um método infalível para determinar se um número N era primo: calcule 2 elevado a potência N e divida-o por N, se o resto for 2, então o número será primo. Em termos da calculadora-relógio de Gauss, esses matemáticos estavam tentando calcular 2N em um relógio com N horas. Em 1819, o teste dos números primos foi eliminado, pois funciona para todos os números até 340, mas falha para 341 = 11 \times 31. Exceção descoberta com uma calculadora-relógio de Gauss contendo 341 horas utilizada para simplificar a análise de um número como 2341.

[editar] Teoremas dos números primos

Sabe-se que, à medida que avançamos na seqüência dos números inteiros, os primos tornam-se cada vez mais raros. Isto levanta duas questões:

  1. O conjunto dos números primos seria finito ou infinito?
  2. Dado um número natural n, qual é a proporção de números primos entre os números menores que n?
  • A resposta à primeira questão é que o conjunto dos primos é infinito, um resultado conhecido na parte central dos Elementos de Euclides, que lida com as propriedades dos números. Na proposição 20, Euclides explica uma verdade simples porém fundamental sobre os números primos: existe um número infinito deles. Pode-se demonstrar, em notação moderna, da seguinte forma:
Suponha, por absurdo, que o número de primos seja finito e sejam  p_1,\ p_2,\ p_3,\ ...,\ p_n os primos. Seja P o número tal que
P = \prod_{i=1}^n p_i + 1, onde \prod denota o produtório.
Se P é um número primo, é necessariamente diferente dos primos  p_1,\ p_2,\ p_3,\ ...,\ p_n, pois sua divisão por qualquer um deles tem um resto de 1.
Por outro lado, se P é composto, existe um número primo q tal que q é divisor de P.
Mas obviamente  q \ne\ p_1,\; p_2,\; ...,\; p_n. Logo existe um novo número primo.
Há um novo número primo, seja P primo ou composto; este processo pode ser repetido indefinidamente, logo há um número infinito de números primos.
Uma outra prova envolve considerar um número inteiro n > 1. Temos n + 1 que, necessariamente, é coprimo de n (números coprimos são os que não têm nenhum fator comum maior do que 1). Provamos isto imaginando que a divisão do menor pelo maior tem resultado 0 e resto n e do maior pelo menor tem resultado 1 e resto 1. Assim, n(n + 1) tem, necessariamente, ao menos dois factores primos.
Tomemos o sucessor deste, que representamos como n(n + 1) + 1. Pelo mesmo raciocínio, ele é coprimo a n(n + 1). Ao multiplicar os dois números, temos [n(n + 1)] * [n + (n + 1) + 1]. Como um de seus fatores tem pelo menos dois factores primos diferentes e é coprimo ao outro, o resultado da multiplicação tem pelo menos três factores primos distintos. Este raciocínio também pode ser infinitamente estendido.
  • A resposta para a segunda pergunta acima é que essa proporção é aproximadamente \frac{n}{\ln (n)}, onde ln é o logaritmo natural.
  • Para qualquer inteiro k, existem k inteiros consecutivos todos compostos.
  • O produto de qualquer sequencia de k inteiros consecutivos é divisivel por k!
  • Se k nao é primo, entao k possui, necessariamente, um fator primo menor do que ou igual a \sqrt{k}.
  • Todo inteiro maior que 1 pode ser representado de maneira unica como o produto de fatores primos

[editar] Grupos e sequências de números primos

Pierre de Fermat (1601-1665) descobriu que todo número primo da forma 4n + 1, tal como 5,13,17,29,37,41, etc., é a soma de dois quadrados. Por exemplo:

5 = 12 + 22,
13 = 22 + 32,
17 = 12 + 42,
29 = 22 + 52,
37 = 12 + 62,
41 = 42 + 52.

Hoje são conhecidos dois grupos de números primos:

(4n + 1) - que podem sempre ser escritos na forma (x2 + y2) e (4n − 1) - nunca podem ser escritos na forma (x2 + y2).

Tratando-se de números primos é perigoso fazer uma generalização apenas com base numa observação, não solidamente comprovada matematicamente. Vejamos o exemplo: 31, 331, 3.331, 33.331, 333.331, 3.333.331 e 33.333.331 são primos mas 333.333.331 não é, pois (333.333.331 = 17 x 19.607.843).

Um olhar mais atento na forma como se distribuem os números primos revela que não há uma regularidade nesta distribuição. Por exemplo existem longos buracos entre os números primos, o número 370.261 é seguido de onze números compostos e não existem primos entre os números 20.831.323 e 20.831.533. Uma das razões desta irregularidade nas distribuição dos números primos é que não existe uma fórmula matemática que produza todos os números primos. Algumas fórmulas produzem muitos números primos, por exemplo x2x + 41 fornece primos quando x=0,\ 1,\ 2,\ ..., \ 40. Veja que para x = 41, a fórmula resulta em 412 que não é primo.

Não existe uma fórmula que forneça primos para todos os valores primos de x, de fato em 1.752 Goldbach provou que não há uma expressão polinomial em x com coeficientes inteiros que possa fornecer primos para todos os valores de x.

Não se sabe se há uma expressão polinomial ax2 + bc + c com a \ne 0 que represente infinitos números primos. Dirichlet usou métodos para provar que se a, 2b e c não têm fator primo em comum, a expressão polinomial a duas variáveis

ax2 + 2bxy + cy2

representa infinitos primos, quando x e y assumem valores positivos inteiros.

Fermat pensou que a fórmula 2^{2^n} + 1 forneceria números primos para n = 0,\ 1,\ 2,\ .... Este números são chamados de números de Fermat e são comumente denotados por Fn. Os cinco primeiros números são:

F_0 = 3,\; F_1 = 5,\; F_2 = 17,\; F_3 = 257\; e \;F_4 = 65.537,

sendo todos primos.

[editar] Maior número primo

Atualmente o maior número primo encontrado é 232.582.657 − 1 descoberto pelo time de colaboradores formado pelos doutores Curtis Cooper e Steven Boone no dia 4 de setembro de 2006, num projeto de computação distribuída pela Internet, que usa o tempo ocioso do processador de computadores pessoais, procurando por números primos específicos, do tipo 2p − 1, em que p é primo, chamados primos de Mersenne. Este último primo encontrado é o primo de Mersenne de número 44 e tem 9.808.358 dígitos.

[editar] Veja Também

[editar] Ligações externas


  Este artigo é um esboço sobre Matemática. Pode ajudar a Wikipédia expandindo-o.



aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -