ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Algoritmo Busca-Cíclica de Floyd - Wikipédia, a enciclopédia livre

Algoritmo Busca-Cíclica de Floyd

Origem: Wikipédia, a enciclopédia livre.

Algoritmo para Busca de Cíclos de Floyd é um algoritmo inventado por Robert W. Floyd em 1967 para detectar ciclos em seqüências arbitrárias, seja em estruturas de dados ou geradas ao vivo (especialmente grafos e seqüências pseudo-aleatórias) usando espaço O(1). Algumas vezes este algoritmo é chamado de algoritmo-"tartaruga e a lebre".

A discussão a seguir é construída em termos de seqüências aleatórias em particular, de grande importância na análise de geradores de número pseudo-aleatórios e nas aplicações de algoritmos tais como fatoração o algoritmo rho de Pollard.

Seja

f\colon S\mapsto S

uma função pseudo-aleatória, com S um conjunto de cardinalidade finita n. Define-se uma seqüência ai como:

ai + 1 = f(ai)

Evidentemente tal seqüência deve ter um ciclo após pelo menos n interações da função pseudo-aleatória, porque há somente n possíveis valores para um elemento. A maneira de naïve para encontrar o tamanho deste ciclo é guardar cada elemento da seqüência e, após cada iteração, procurar entre todos eles por duplicações. Isto significa que a necessidade de armazenamento é O(μ + λ), onde μ é o tamanho do ciclo e λ é o tamanho da cauda (isto é, da parte da seqüência que não é cíclica).

Note que se nos encontramos dois elementos de seqüência tal que

ai = aj

então |ij| deve ser múltiplo do comprimento do ciclo, porque a definição de uma seqüência cíclica é:

aλ + m = aλ + m + kμ.

A diferença entre os dois indices que armazenam elementos iguais é kμ, um múltiplo do comprimento do ciclo. Algoritmo de busca-cíclica de Floyd encontra tal igualdade pelo processamento de duas instâncias de seqüências em paralelo, uma das quais é mais rápida mais "rápida" do que a outra; isto é uma instância processa duas iterações enquanto a outra processa uma. Então, quando

am = a2m

então qualquer divisor de 2mm = m deve ser o comprimento do ciclo. Se m é composto, pode-se deixar o algoritmo continuar a processar até que ele encontre mais valores de m para os quais a igualdade acima é verdadeira, e obter o maior divisor comum de m. Neste processo, a lista de possíveis μ's pode ser preparada.

A melhor maneira de visualizar este algoritmo é construir um diagrama da seqüência. Ele se parecerá com a letra Grega ρ. A seqüência inicia-se no fim da cauda, e move-=se para cima girando na direção oposta aos ponteiros do relógio. Acompanhando o algoritmo, as duas instâncias da seqüência irão se encontrar em a6 depois de 6 iterações. Se o algoritmo continuar, as seqüências se encontram novamente, após outras seis iterações, no mesmo elemento. Desde que o comprimento do ciclo seja de fato 6, o mesmo resultado continuará ocorrendo.

No melhor caso, este algoritmo necessita λ comparações (com λ > 1), desde que a seqüência mais lenta tenha de percorrer ao menos a parte inicial do ciclo. O pior caso necessita λ + μ/2 comparações; a seqüência lenta não alcançará mais do que a metade do círculo sem que encontrar a seqüência rápida. O algoritmo usa um armazenamento de O(1).

Talvez a mais difundida variante deste algoritmo seja o algoritmo rho de Pollard, um algoritmo de fatoração inteira que usa números pseudo-aleatórios para fatorar inteiros. Há também um algoritmo para cálculo de logaritmo discretos baseado no Algoritmo de busca-ciclica de Floyd.


  Este artigo é um esboço sobre Matemática. Pode ajudar a Wikipédia expandindo-o.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -