ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Brooks-tétel - Wikipédia

Brooks-tétel

A Wikipédiából, a szabad enciklopédiából.

A gráfelméletben a Brooks-tétel a gráf fokszáma és kromatikus száma közötti összefüggés. A tétel R.L Brooks-tól származik, aki 1941-ben publikálta On Coloring the Nodes of a Network könyvében.

Legyen G véges, összefüggő gráf, ami nem páratlan hosszú kör vagy teljes gráf. Jelölje D(G) a G maximális fokszámát, χ(G) pedig a kromatikus számát. Ekkor

\chi(G)\le D(G).

[szerkesztés] Megjegyzés

A kizárt esetekre az állítás nyilvánvalóan nem igaz.

[szerkesztés] Bizonyítás

Δ(G) = 2 -re nyilvánvaló az állítás, ugyanis ha a maximális fokszám 2, akkor vagy egy kört, vagy egy utat kapunk. Egy út vagy egy páros kör esetében 2 színnel ki tudjuk színezni a gráfot, és ha a kör páratlan hosszúságú akkor csak hárommal.

Most már feltehetjük, hogy Δ(G)  \geq 3. A csúcsok számára való indukcióval bizonyítjuk az állítást.

Az első lépésben azt látjuk be, hogy elég kétszeresen összefüggő gráfokat vizsgálnunk. Indirekt tegyük fel, hogy nem kétszeresen összefüggő a vizsgálandó gráfunk, ami azt jelenti hogy létezik x pont, melyet elhagyva legalább két komponensre esik szét a gráfunk. Ha pontosan két komponensre esik szét, akkor rakjuk vissza mindkét komponensbe x-et, és nevezzük ezeket a komponenseket G1 és G2-nek. Ha több mint két komponensre esik szét, akkor maradjon G1 továbbra is egy komponens és G2 meg legyen az összes többi komponens és x uniója: G2 = (G \ G1) \cup {x}. A két komponensben minden csúcs fokszáma ugyanannyi marad, csak x fokszáma csökken. Tehát továbbra sem lesz egyik fokszám sem nagyobb mint Δ(G), viszont x feltétlenül kisebb lesz mindkét komponensben Δ(G)-nel. Ebből következik, hogy egyik komponens sem lehet Δ(G) + 1 pontú teljes gráf. Tehát, az indukciós feltevésünk miatt, mindkét komponens kiszínezhető Δ(G) színnel, és ha x-et mindkét komponensben ugyanolyan színűre választjuk, akkor ha újra „összerakjuk” a gráfot akkor az eredeti gráfunknak egy Δ(G) színnel való jó színezését kapjuk.

Második lépésben pedig azt igazoljuk, hogy elég háromszorosan összefüggő gráfokat néznünk. Ismét indirekt tegyük fel hogy egy x és y pont elhagyásával szétesik a gráfunk G1 és G2-re. Végezzük el ugyanazt az eljárást mint az első lépésben. Itt csak akkor van gond, ha az egyik komponens minden színezése olyan hogy x és y egyforma színű, és a másik komponens minden színezésénél x és y különböző színű. Ebben az esetben nem tudjuk újra „összerakni” a gráfunkat. Ebben az esetben tekintsük a G1 és G2 komponenst és mindkettőben húzzunk be x és y között egy élet. Így x és y fokszáma továbbra is legfeljebb Δ(G) marad, vagyis az indukciós feltevés miatt vagy mindkét komponens kiszínezhető Δ(G) színnel, vagy legalább az egyik komponensünk egy Δ(G) + 1 csúcsú teljes gráf. Ha színezhető mindkettő Δ(G) színnel, akkor mindkét komponensben különböző színű x és y, tehát „össze tudjuk illeszteni” a két komponenst és készen vagyunk. Ha pedig az egyik komponensünk egy Δ(G) + 1 pontú teljes gráf, akkor ebben a komponensben x-nek és y-nak is csak egy szomszédja volt a másik komponensben. Jelöljük ezeket x' és y'-vel. Ha most elvesszük mondjuk az x és y' csúcsot az eredeti gráfunkból, akkor ismét két részre esik a gráfunk. Ha ezzel a két ponttal végezzük el az előbbi algoritmust akkor nem kapunk olyan komponenst ami teljes gráf, tehát megkapjuk a gráf egy Δ(G) színnel való jó színezését.

Innentől már csak háromszorosan összefüggő gráfokra kell bizonyítanunk az állítast. Legyenek v1,v2,vn olyan csúcsai G-nek, hogy v1 és vn között fut él, v2 és vn között is fut él, viszont v1 és v2 között nem fut él (mivel G nem teljes gráf és összefüggő, ezért ilyen csúcsokat minden esetben találunk). Jelöljük a gráf többi pontját a következőképpen: v3,v4,...,vn − 1 és minden pontnak legyen nagyobb indexű szomszédja is. Ha most elvesszük a gráfból a v1 és v2 csúcsokat akkor G továbbra is összefüggő marad, hiszen háromszorosan összefüggő volt. Ennek a gráfnak tekintsük egy feszítőfáját. Egy feszítőfának legalább két elsőfokú pontja van, tehát lesz elsőfokú pontja vn-en kívül. Legyen ez a csúcsunk v3. Tehát most elvehetjük v1, v2, és v3-at a gráfból és összefüggő marad, és most ennek a gráfnak tekintjük a feszítőfáját, és hasonlóan kapjuk v4-et.

Az utolsó lépésben már csak meg kell adnunk egy megfelelő színezést Δ(G) színnel: Színezzük v1-et és v2-ot egyforma színűre. A többi csúcsot indexük szerint sorban színezzük ki mohó módon: vi-hez mindig találunk majd szabad színt, mert ennek a csúcsnak mindig csak a kisebb indexű csúcsát színeztük még ki és ebből kevesebb van mint Δ(G). Csak vn-nek lehet Δ(G) szomszédja, ezek között viszont kettő (v1 és v2) már egyforma színű. Ezzel igazoltuk az állítást.

[szerkesztés] Hivatkozások

  • Brooks, R. L. "On Coloring the Nodes of a Network." Proc. Cambridge Philos. Soc. 37, 194-197, 1941.
  • Katona, Recski, Szabó "A Számítástudomány alapjai." Typotex. Budapest, 2006. p. 80-82.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -