See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Lemme d'Itô - Wikipédia

Lemme d'Itô

Un article de Wikipédia, l'encyclopédie libre.

Le lemme d'Itô, ou encore formule d'Itô est l'un des principaux résultats de la théorie du calcul stochastique. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS).

Sommaire

[modifier] Énoncé

Si X est la solution de l'EDS

 X(t)=X(0)+\int_0^t \sigma(X(s),s)\,dB(s)
+\int_0^t m(X(s),s)\,ds,

ou de  dX(t)=\sigma(X(t),t)\,dB(t)
+m(X(t),t)\,dt,

B est un mouvement brownien, et si f(t,x) est une fonction de classe \mathcal{C}^{1,2}(\mathbb{R}_+,\mathbb{R})), alors

 df(x(t),t) = \left(\frac{\partial f}{\partial t} + m(x(t),t)\frac{\partial f}{\partial x} + \frac{1}{2}\sigma(x(t),t)^2\frac{\partial^2 f}{\partial x^2}\right)dt + \sigma(x(t),t)\frac{\partial f}{\partial x}\,dB_t.

Dans le cas d'un mouvement brownien \frac{\sigma^2}{2} correspond au coefficient de diffusion et m à vitesse moyenne de la particule. (voir Équation de Fokker-Planck). En finance σ est la volatilité et m la dérive du prix du sous jacent. (voir Modèle Black-Scholes par exemple)

[modifier] Applications

En calcul stochastique,

  • Elle permet d'affirmer l'existence de solutions d'EDS sous des conditions (très) faibles de régularité sur les coefficients.

[modifier] Histoire

La formule d'Itô a été démontrée pour la première fois par le mathématicien japonais Kiyoshi Itô dans les années 1940.

Le mathématicien Wolfgang Doeblin avait de son côté ébauché une théorie similaire avant de se suicider à la défaite de son bataillon en juin 1940. Ses travaux furent envoyés dans un pli cacheté à l'Académie des sciences qui ne fut ouvert qu'en 2000.

[modifier] Un exemple : le modèle Black-Scholes

Le mouvement brownien est souvent utilisé en finance comme le plus simple modèle d'évolution de cours de bourse. Il s'agit de la solution de l'équations différentielle stochastique:


d X(t)=\sigma X(t)\, dB(t) +\mu X(t)\, dt,

B est un mouvement brownien.

Si σ = 0, alors nous sommes face à une équation différentielle ordinaire dont la solution est X(t) = X(0)exp(μt).

En posant f(x(x),t) = log(x(t)) on obtient grâce à la formule d'Itô:

d(log(x(t))) = \left( x(t) \mu \dfrac{1}{x(t)} + 0 + \dfrac{1}{2} x(t)^2 \sigma^2 \left( - \dfrac{1}{x(t)^2} \right) \right)dt + x(t) \sigma \dfrac{1}{x(t)} dB_t
d(log(x(t))) = \left(\mu - \dfrac{\sigma^2}{2} \right)dt + \sigma dB_t

On peut alors intégrer et:


X(t)=X(0)\exp\left(\sigma B(t)
+\mu t-\frac{1}{2}\sigma^2 t\right)

[modifier] Voir aussi

[modifier] Articles connexes

[modifier] Références

  • C. G. Gardiner. Handbook of Stochastic Methods (3ème éd.), Springer, 2004. ISBN 3540208828
  • I. Karatzas et S. Shreve. Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics (2ème éd.), Springer, 2004. ISBN 0387976558.
  • B. Øksendal. Stochastic Differential Equations: An Introduction With Applications (6ème éd.), Springer, 2005. ISBN 3540047581
  • (ouvrage de vulgarisation) G. Pagès et C. Bouzitat. En passant par hasard... les probabilités de sous les jours, Vuibert, 1999. ISBN 2711752585
  • D. Revuz et M. Yor. Continuous Martingales and Brownian Motion, (3ème éd.), Springer, 2004.ISBN 3540643257
  • L.C.G. Rogers et D. Williams. Diffusions, Markov processes and martingales (2ème éd.), Cambridge Mathematical Library, Cambridge University Press, 2000. ISBN 0521775930
  • (en) Karlin S, Taylor H M: A first course in stochastic processes. Academic Press, (1975)
  • (en) Karlin S, Taylor H M: A second course in stochastic processes. Academic Press, (1981)
  • (en) Schuss Z: Theory and applications of stochastic differntial equations. Wiley Series in Probability and Statistics, (1980)
  • Tout ouvrage traitant du mouvement brownien et du calcul stochastique.


Domaines des mathématiques
AlgèbreAlgèbre commutativeAlgèbre homologiqueAlgèbre linéaireAnalyseAnalyse réelleAnalyse complexeAnalyse fonctionnelleAnalyse numériqueCalcul quantiqueCombinatoireGéométrieGéométrie algébriqueGéométrie différentielle • Géométrique métrique • Géométrie non commutativePhysique mathématiqueProbabilitésStatistiquesSystèmes dynamiquesThéorie des nombresThéorie de GaloisThéorie des groupesTopologieTopologie algébrique


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -