Lemme d'Itô
Un article de Wikipédia, l'encyclopédie libre.
Le lemme d'Itô, ou encore formule d'Itô est l'un des principaux résultats de la théorie du calcul stochastique. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS).
Sommaire |
[modifier] Énoncé
Si X est la solution de l'EDS
- ,
ou de ,
où B est un mouvement brownien, et si f(t,x) est une fonction de classe ), alors
Dans le cas d'un mouvement brownien correspond au coefficient de diffusion et m à vitesse moyenne de la particule. (voir Équation de Fokker-Planck). En finance σ est la volatilité et m la dérive du prix du sous jacent. (voir Modèle Black-Scholes par exemple)
[modifier] Applications
- La formule d'Itô est l'une des pierres angulaires du calcul stochastique, et est utilisée dans de très nombreux domaines: mathématiques appliquées, physique, finance, biologie, Mécanique quantique, traitement du signal, etc..
- Elle permet de faire le lien entre les solutions d'EDS et des opérateurs différentiels du second ordre, et donc entre la théorie des probabilités et celle des équations aux dérivées partielles.
- Elle permet d'affirmer l'existence de solutions d'EDS sous des conditions (très) faibles de régularité sur les coefficients.
[modifier] Histoire
La formule d'Itô a été démontrée pour la première fois par le mathématicien japonais Kiyoshi Itô dans les années 1940.
Le mathématicien Wolfgang Doeblin avait de son côté ébauché une théorie similaire avant de se suicider à la défaite de son bataillon en juin 1940. Ses travaux furent envoyés dans un pli cacheté à l'Académie des sciences qui ne fut ouvert qu'en 2000.
[modifier] Un exemple : le modèle Black-Scholes
Le mouvement brownien est souvent utilisé en finance comme le plus simple modèle d'évolution de cours de bourse. Il s'agit de la solution de l'équations différentielle stochastique:
où B est un mouvement brownien.
Si σ = 0, alors nous sommes face à une équation différentielle ordinaire dont la solution est X(t) = X(0)exp(μt).
En posant f(x(x),t) = log(x(t)) on obtient grâce à la formule d'Itô:
On peut alors intégrer et:
[modifier] Voir aussi
[modifier] Articles connexes
[modifier] Références
- C. G. Gardiner. Handbook of Stochastic Methods (3ème éd.), Springer, 2004. ISBN 3540208828
- I. Karatzas et S. Shreve. Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics (2ème éd.), Springer, 2004. ISBN 0387976558.
- B. Øksendal. Stochastic Differential Equations: An Introduction With Applications (6ème éd.), Springer, 2005. ISBN 3540047581
- (ouvrage de vulgarisation) G. Pagès et C. Bouzitat. En passant par hasard... les probabilités de sous les jours, Vuibert, 1999. ISBN 2711752585
- D. Revuz et M. Yor. Continuous Martingales and Brownian Motion, (3ème éd.), Springer, 2004.ISBN 3540643257
- L.C.G. Rogers et D. Williams. Diffusions, Markov processes and martingales (2ème éd.), Cambridge Mathematical Library, Cambridge University Press, 2000. ISBN 0521775930
- (en) Karlin S, Taylor H M: A first course in stochastic processes. Academic Press, (1975)
- (en) Karlin S, Taylor H M: A second course in stochastic processes. Academic Press, (1981)
- (en) Schuss Z: Theory and applications of stochastic differntial equations. Wiley Series in Probability and Statistics, (1980)
- Tout ouvrage traitant du mouvement brownien et du calcul stochastique.
Domaines des mathématiques | |||
Algèbre • Algèbre commutative • Algèbre homologique • Algèbre linéaire • Analyse • Analyse réelle • Analyse complexe • Analyse fonctionnelle • Analyse numérique • Calcul quantique • Combinatoire • Géométrie • Géométrie algébrique • Géométrie différentielle • Géométrique métrique • Géométrie non commutative • Physique mathématique • Probabilités • Statistiques • Systèmes dynamiques • Théorie des nombres •Théorie de Galois • Théorie des groupes • Topologie • Topologie algébrique |