See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Utilisateur:EtudiantEco - Wikipédia

Utilisateur:EtudiantEco

Un article de Wikipédia, l'encyclopédie libre.

Comme mon pseudo l'indique, je suis étudiant en économie politique. Je suis intéressé par la statistique, l'économétrie. Plus particulièrement par l'étude des séries temporelles (modèles VECM, Threshold VECM). Je suis aussi utilisateur de R.

Toute personne intéressée également par ces projets peut volontiers me contacter pour les développer un peu plus.

Bienvenue. Ceci est ta page utilisateur, EtudiantEco.
N’hésite pas à la modifier et à t’y présenter !
--Sire de Hephgé 19 août 2006 à 14:21 (CEST)

Un peu de chenit qui m'est utile



{{Théorème|Définition|blabla}}

Définition — Une fonction f d’un intervalle I de \mathbb{R} vers \mathbb{R} est dite convexe lorsque, pour tous x1 et x2 de I et tout λ dans [0,1] on a :

 f(\lambda\, x_1+(1-\lambda)\, x_2) \leq \lambda\, f(x_1)+(1-\lambda)\, f(x_2)

Aide:Comment modifier une page


Test de Dickey Fuller (en) grace à {{Lien|Test de Dickey Fuller|en|trad=Dickey-Fuller test}}

Icône de détail Article détaillé : 1884 au Canada.

grace a {{article détaillé|1884 au Canada}}

Robinson, Joan. 1953–54. “The Production Function and the Theory of Capital.” Review of Economic Studies. 21:2, pp. 81–106


Even in the first case, in a time series generated from a stochastic process, we cannot say that the time series is stationary or nonstationary unless we know the generating process. In fact, any short time series (theoretically, any time series with finite length) can be generated by infinite stochastic processes, stationary and nonstationary.

{{Périodique
| auteur      = Philips P.C.B| titre = Understanding Spurious Regression in econometrics
| journal     = Journal of econometrics | vol = 33 | date= 1986 | pages = 311-340
}}

Philips P.C.B, « Understanding Spurious Regression in econometrics », dans Journal of econometrics, 1986, 33, p. 311-340

Résultat affiché Code R

Call: lm(formula = x ~ y)

Residuals

Min 1Q Median 3Q Max
-2.776e+00 -6.140e-01 -1.208e-03 6.279e-01 3.205e+00

Coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03447376 0.04348857 0.79270862 0.42832508
y -0.04997771 0.04306249 -1.16058589 0.24636639

Residual standard error: 0.972 on 498 degrees of freedom

Multiple R-squared: 0.0027, Adjusted R-squared: 0.000695

F-statistic: 1.35 on 1 and 498 DF,p-value: 0.246

x<-cumsum(rnorm(100)) #x: simulation d'une variable intégrée d'ordre 1

y<-cumsum(rnorm(100)) #y: simulation d'une variable intégrée d'ordre 1

summary(lm(y~x))      #Régression linéaire 


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -