See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Différences divisées - Wikipédia

Différences divisées

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, les différences divisées sont une méthode récursive de calculs de divisions.

Sommaire

[modifier] Définition

Étant donné n points

(x_0, y_0),\ldots,(x_{n-1}, y_{n-1})

les différences divisées sont définies de la manière suivante

[y_{\nu}] := y_{\nu} \qquad \mbox{ , } \nu = 0,\ldots,n-1
[y_{\nu},\ldots,y_{\nu+j}] := \frac{[y_{\nu+1},\ldots y_{\nu+j}] - [y_{\nu},\ldots y_{\nu+j-1}]}{x_{\nu+j}-x_{\nu}} \qquad \mbox{ , } \nu = 0,\ldots,n-j,j=1,\ldots,n-1

[modifier] Notes

Si les points sont donnés à l'aide d'une fonction f(x)

(x_0, f(x_0)),\ldots,(x_{n-1}, f(x_{n-1}))

que l'on écrit généralement

f[x_{\nu}] := f(x_{\nu}) \qquad \mbox{ , } \nu = 0,\ldots,n-1
f[x_{\nu},\ldots,x_{\nu+j}] := \frac{f[x_{\nu+1},\ldots x_{\nu+j}] - f[x_{\nu},\ldots x_{\nu+j-1}]}{x_{\nu+j}-x_{\nu}} \qquad \mbox{ , } \nu = 0,\ldots,n-j,j=1,\ldots,n-1

[modifier] Exemple

Les premières itérations donnent :

Ordre 0 :[y0] = y0
Ordre 1 :[y_0,y_1] = \frac{y_1-y_0}{x_1-x_0}
Ordre 2 :[y_0,y_1,y_2] = \frac{\frac{y_2-y_1}{x_2-x_1}-\frac{y_1-y_0}{x_1-x_0}}{x_2-x_0}

Pour expliciter le processus récursif, les différences divisées peuvent être décrites de cette manière


\begin{matrix}
x_0 & y_0 = [y_0] &           &               & \\
        &       & [y_0,y_1] &               & \\
x_1 & y_1 = [y_1] &           & [y_0,y_1,y_2] & \\
        &       & [y_1,y_2] &               & [y_0,y_1,y_2,y_3]\\
x_2 & y_2 = [y_2] &           & [y_1,y_2,y_3] & \\
        &       & [y_2,y_3] &               & \\
x_3 & y_3 = [y_3] &           &               & \\
\end{matrix}

[modifier] Formulation de Peano

[modifier] Application

La méthode des différences divisées est utilisée dans le calcul des coefficients dans une interpolation newtonienne (méthode particulière d'une interpolation polynomiale).

[modifier] Liens externes

Interpolation polynômiale de type Newton et différences divisées.

Autres langues


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -