Algebran peruslause
Wikipedia
Matematiikassa algebran peruslause sanoo, että jokaisella yhden muuttujan polynomilla p(z), jonka aste n ≥ 1 ja jonka kertoimet ovat reaali- tai kompleksilukuja, on ainakin yksi nollakohta kompleksilukujen joukossa. Toisin sanoen kompleksilukujen kunta on algebrallisesti suljettu kunta, ja siten yhtälöllä p(z) = 0 on n juurta. Juurista voi tosin olla joitakin keskenään samoja, joten juurten kertaluku täytyy ottaa huomioon juurten lukumäärää laskettaessa.
Algebran peruslauseen esitti jo D'Alembert 1700-luvulla, mutta vasta Gauss antoi sille vuoden 1800 vaiheilla (usemmankin) pätevän todistuksen. Yksinkertaisin todistus perustuu funktioteorian Liouvillen lauseeseen.
Lauseen nimi on monien matemaatikoiden mielestä harhaanjohtava, sillä nykyään algebra tutkii paljon muutakin kuin pelkkiä polynomeja.