ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Zero set - Wikipedia, the free encyclopedia

Zero set

From Wikipedia, the free encyclopedia

In mathematics, the zero set of a real-valued function f : XR (or more generally, a function taking values in some additive group) is the subset f − 1(0) of X (the inverse image of 0). In other words, the zero set of the function f is the subset of X on which f(x) = 0. The cozero set of f is the complement of the zero set of f (i.e. the subset of X on which f is nonzero).

Zero sets are important in several branches of geometry and topology.

[edit] Topology

In topology, zero sets are defined with respect to continuous functions. Let X be a topological space, and let A be a subset of X. Then A is a zero set in X if exists a continuous function f : XR such that

A = f^{-1}(0).\,

A cozero set in X is a subset whose complement is a zero set.

Every zero set is a closed set and a cozero set is an open set, but the converses does not always hold. In fact:

  • A topological space X is completely regular if and only if every closed set is the intersection a family of zero sets in X. Equivalently, X is completely regular if and only if the cozero sets form a basis for X.
  • A topological space is perfectly normal if and only if every closed set is a zero set (equivalently, every open set is a cozero set).

[edit] Differential geometry

In differential geometry, zero sets are frequently used to define manifolds. An important spacial case is the case that f is a smooth function from Rp to Rn. If zero is a regular value of f then the zero-set of f is a smooth manifold of dimension m=p-n by the regular value theorem.

For example, the unit m-sphere in Rm+1 is the zero set of the real-valued function f(x) = |x|2 - 1.

[edit] Algebraic geometry

In algebraic geometry, an affine variety is the zero set of a polynomial, or collection of polynomials. Similarly, a projective variety is the projectivization of the zero set of a collection of homogeneous polynomials.



aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -