ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Visitor pattern - Wikipedia, the free encyclopedia

Visitor pattern

From Wikipedia, the free encyclopedia

In object-oriented programming and software engineering, the visitor design pattern is a way of separating an algorithm from an object structure. A practical result of this separation is the ability to add new operations to existing object structures without modifying those structures.

In essence, the visitor allows one to add new virtual functions to a family of classes without modifying the classes themselves; instead, one creates a visitor class that implements all of the appropriate specializations of the virtual function. The visitor takes the instance reference as input, and implements the goal through double dispatch.

While powerful, the visitor pattern does have limitations as compared with conventional virtual functions. It is not possible to create visitors for objects without adding a small callback method inside each class and the callback method in each of the classes is not inheritable to the level of the new subclass.

Contents

[edit] Elaborated

The idea is to use a structure of element classes, each of which has an accept() method that takes a visitor object as an argument. Visitor is an interface that has a visit() method for each element class. The accept() method of an element class calls back the visit() method for its class. Separate concrete visitor classes can then be written that perform some particular operations, by implementing these operations in their respective visit() methods.

One of these visit() methods of a concrete visitor can be thought of as methods not of a single class, but rather methods of a pair of classes: the concrete visitor and the particular element class. Thus the visitor pattern simulates double dispatch in a conventional single-dispatch object-oriented language such as Java, Smalltalk, and C++. For an explanation of how double dispatch differs from function overloading, see Double dispatch is more than function overloading in the double dispatch article. In the Java language, two techniques have been documented which use reflection to simplify the mechanics of double dispatch simulation in the visitor pattern: getting rid of accept() methods (the Walkabout variation), and getting rid of extra visit() methods.

The visitor pattern also specifies how iteration occurs over the object structure. In the simplest version, where each algorithm needs to iterate in the same way, the accept() method of a container element, in addition to calling back the visit() method of the visitor, also passes the visitor object to the accept() method of all its constituent child elements.

Because the Visitor object has one principal function (manifested in a plurality of specialized methods) and that function is called visit(), the Visitor can be readily identified as a potential function object or functor. Likewise, the accept() function can be identified as a function applicator, a mapper, which knows how to traverse a particular type of object and apply a function to its elements. Lisp's object system with its multiple dispatch does not replace the Visitor pattern, but merely provides a more concise implementation of it in which the pattern all but disappears.

[edit] Structure

UML Class Diagram

Image:VisitorClassDiagram.png

[edit] Example

The following example is an example in the Java programming language:

interface Visitor {
    void visit(Wheel wheel);
    void visit(Engine engine);
    void visit(Body body);
    void visitCar(Car car);
}
interface CarElement{
    public void accept(Visitor visitor);
}
class Wheel implements CarElement{
    private String name;
    Wheel(String name) {
        this.name = name;
    }
    String getName() {
        return this.name;
    }
    public void accept(Visitor visitor) {
        visitor.visit(this);
    }
}
 
class Engine implements CarElement{
    public void accept(Visitor visitor) {
        visitor.visit(this);
    }
}
 
class Body implements CarElement{
    public void accept(Visitor visitor) {
        visitor.visit(this);
    }
}
 
class Car  {
    CarElement[] elements;
    public CarElement [] getElements(){
        return elements.clone();
    }
    public Car() {
        this.elements = new CarElement[]
          { new Wheel("front left"), new Wheel("front right"),
            new Wheel("back left") , new Wheel("back right"),
            new Body(), new Engine()};
    }
}
 
class PrintVisitor implements Visitor {
 
    public void visit(Wheel wheel) {      
        System.out.println("Visiting "+ wheel.getName()
                            + " wheel");
    }
    public void visit(Engine engine) {
        System.out.println("Visiting engine");
    }
    public void visit(Body body) {
        System.out.println("Visiting body");
    }
 
    public void visitCar(Car car) {
        System.out.println("\nVisiting car");
        for(CarElement element : car.getElements()) {
            element.accept(this);
        }
        System.out.println("Visited car");
    }
    public void visit(CarElement carElement) {
        // TODO Auto-generated method stub
 
    }
 
}
 
class DoVisitor implements Visitor {
    public void visit(Wheel wheel) {
        System.out.println("Steering my wheel");
    }
    public void visit(Engine engine) {
        System.out.println("Starting my engine");
    }
    public void visit(Body body) {
        System.out.println("Moving my body");
    }
    public void visitCar(Car car) {
        System.out.println("\nStarting my car");
        for(CarElement carElement : car.getElements()) {
            carElement.accept(this);
        }
        System.out.println("Started car");
    }
 
}
 
public class VisitorDemo {
    static public void main(String[] args){
        Car car = new Car();
        Visitor printVisitor = new PrintVisitor();
        Visitor doVisitor = new DoVisitor();
        printVisitor.visitCar(car);
        doVisitor.visitCar(car);
    }
}

The following example is an example in the C++ programming language:

#include <iostream>
#include <ostream>
#include <vector>
 
class Wheel;
class Engine;
class Body;
class Car;
 
class Visitor {
public:
        Visitor() { }
        virtual ~Visitor() { }
 
        virtual void visit(Wheel &) = 0;
        virtual void visit(Engine &) = 0;
        virtual void visit(Body &) = 0;
        virtual void visit(Car &) = 0;
};
 
class TestVisitor : public Visitor {
public:
        TestVisitor() : Visitor() { }
        virtual ~TestVisitor() { }
 
        virtual void visit(Wheel & wheel) {
                std::cout << "Visiting Wheel" << std::endl;
        }
        virtual void visit(Engine & engine) {
                std::cout << "Visiting Engine" << std::endl;
        }
        virtual void visit(Body & body) {
                std::cout << "Visiting Body" << std::endl;
        }
        virtual void visit(Car & car) {
                std::cout << "Visiting Car" << std::endl;
        }
};
 
class CarElement {
public:
        CarElement() { }
        virtual ~CarElement() { }
 
        virtual void accept(Visitor &) = 0;
};
 
class Wheel : public CarElement {
public:
        virtual void accept(Visitor & visitor) {
                visitor.visit(*this);
        }
};
 
class Engine : public CarElement {
public:
        virtual void accept(Visitor & visitor) {
                visitor.visit(*this);
        }
};
 
class Body : public CarElement {
public:
        virtual void accept(Visitor & visitor) {
                visitor.visit(*this);
 
                for (std::vector<Wheel>::iterator i = _wheels.begin(); i != _wheels.end(); ++i) {
                        i->accept(visitor);
                }
        }
 
private:
        std::vector<Wheel> _wheels;
};
 
class Car : public CarElement {
public:
        virtual void accept(Visitor & visitor) {
                visitor.visit(*this);
 
                _engine.accept(visitor);
                _body.accept(visitor);
        }
 
private:
        Engine _engine;
        Body _body;
};
 
int main() {
        Car car;
        TestVisitor visitor;
 
        car.accept(visitor);
}

[edit] State

Aside from potentially improving separation of concerns, the visitor pattern has an additional advantage over simply calling a polymorphic method: a visitor object can have state. This is extremely useful in many cases where the action performed on the object depends on previous such actions.

An example of this is a pretty-printer in a programming language implementation (such as a compiler or interpreter). Such a pretty-printer object (implemented as a visitor, in this example), will visit nodes in a data structure that represents a parsed and processed program. The pretty-printer will then generate a textual representation of the program tree. In order to make the representation human readable, the pretty-printer should properly indent program statements and expressions. The current indentation level can then be tracked by the visitor as its state, correctly applying encapsulation, whereas in a simple polymorphic method invocation, the indentation level would have to be exposed as a parameter and the caller would rely on the method implementation to use and propagate this parameter correctly.

[edit] See also

[edit] External links



aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -