ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Sylvain Cappell - Wikipedia, the free encyclopedia

Sylvain Cappell

From Wikipedia, the free encyclopedia

Sylvain Cappell
Born 1947
Belgium
Education Princeton University
Occupation mathematician
Website
http://www.math.nyu.edu/faculty/cappell/

Sylvain Cappell, Belgian-born American mathematician (born 1947), a former student of William Browder at Princeton, is a topologist who has spent most of his career at the [[Courant Institute of the Mathematical Sciences]] at NYU.

He is best known for his "codimension one splitting theorem" [1], which is a standard tool in high dimensional geometric topology, and a number of important results proven with his collaborator Julius Shaneson (now at the University of Pennsylvania). Their work includes many results in knot theory (and broad generalizations of that subject) [2] and aspects of low-dimensional topology. They gave the first nontrivial examples of topological conjugacy of linear transformations [3], which led to a flowering of research on the topological study of spaces with singularities [4].

More recently, they combined their understanding of singularities, first to lattice point counting in polytopes, then to Euler-Maclaurin type summation formulae [5], and most recently to counting lattice points in the circle [6]. This last problem is a classical one, initiated by Gauss and the paper is still being vetted by experts.

[edit] Awards

[edit] References

  1. ^ Sylvain Cappell, A splitting theorem for manifolds, Inventiones Mathematicae, 33 (1975) pp 69-170
  2. ^ Sylvain Cappell and Julius Shaneson, The codimension two placement problem and homology equivalent manifolds, Annals of Math. 99 (1974) 277-348.
  3. ^ Sylvain Cappell and Julius Shaneson, Nonlinear Similarity, Annals of Math. 113 (1981) 315-355
  4. ^ Shmuel Weinberger, The Topological Classification of Stratified Spaces, University of Chicago Press, Chicago, 1994
  5. ^ Julius Shaneson, Characteristic classes, lattice points, and Euler-MacLaurin formulae, Proc. International Congress of Mathematicians, vol 1 (Zurich 1994) 1995 Birkhauser, Basel, Berlin, 612-624
  6. ^ Sylvain Cappell and Julius Shaneson, Some problems in number theory I: The Circle Problem, http://front.math.ucdavis.edu/0702.5613


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -