ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Strictly positive measure - Wikipedia, the free encyclopedia

Strictly positive measure

From Wikipedia, the free encyclopedia

In mathematics, strict positivity is a concept in measure theory. Intuitively, a strictly positive measure one that is "nowhere zero", or that it is zero "only on points".

Contents

[edit] Definition

Let (X, T) be a Hausdorff topological space and let Σ be a σ-algebra on X that contains the topology T (so that every open set is a measurable set, and Σ is at least as fine as the Borel σ-algebra on X). Then a measure μ on (X, Σ) is called strictly positive if every non-empty open subset of X has strictly positive measure.

In more condensed notation, μ is strictly positive if and only if

\forall U \in T \mbox{ s.t. } U \neq \emptyset, \mu (U) > 0.

[edit] Examples

  • Counting measure on any set X (with any topology) is strictly positive.
  • Dirac measure is usually not strictly positive unless the topology T is particularly "coarse" (contains "few" sets). For example, δ0 on the real line R with its usual Borel topology and σ-algebra is not strictly positive; however, if R is equipped with the trivial topology T = {∅, R}, then δ0 is strictly positive. This example illustrates the importance of the topology in determining strict positivity.
  • Gaussian measure on Euclidean space Rn (with its Borel topology and σ-algebra) is strictly positive.
    • Wiener measure on the space of continuous paths in Rn is a strictly positive measure — Wiener measure is an example of a Gaussian measure on an infinite-dimensional space.
  • Lebesgue measure on Rn (with its Borel topology and σ-algebra) is strictly positive.
  • The trivial measure is never strictly positive, regardless of the space or topology used.

[edit] Properties

  • If μ and ν are two measures on a measurable topological space (X, Σ), with μ strictly positive and also absolutely continuous with respect to ν, then ν is strictly positive as well. The proof is simple: let U ⊆ X be an arbitrary open set; since μ is strictly positive, μ(U) > 0; by absolute continuity, ν(U) > 0 as well.
  • Hence, strict positivity is an invariant with respect to equivalence of measures.

[edit] See also


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -