ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Star-shaped polygon - Wikipedia, the free encyclopedia

Star-shaped polygon

From Wikipedia, the free encyclopedia

A star-shaped polygon (top). Its kernel is shown at the bottom in red.
A star-shaped polygon (top). Its kernel is shown at the bottom in red.

A star-shaped polygon (not to be confused with star polygon) is a polygonal region in the plane which is a star domain, i.e., a polygon P is star-shaped, if there exists a point z such that for each point p of P the segment zp lies entirely within P.[1]

The set of all points z with the described property is called the kernel of P.

Contents

[edit] Uses

Star-shaped polygons are of interest in computational geometry and its applications such as motion planning because of its relation to the notion of visibility: the star-shaped polygon may be informally defined as the one whose whole interior is visible from a single point, assuming that the polygon boundary is not transparent.

[edit] Properties

Convex polygons are star shaped, and a convex polygon coincides with its own kernel.

Point-in-polygon queries may be answered in logarithmic time after linear-time preprocessing.

[edit] Kernel

Each edge of a polygon defines an interior half-plane, informally defined as a half-plane that contains interior points of the polygon in the vicinity of the edge in question. The kernel of a polygon is the intersection of all its interior half-planes. Intersection of N arbitrary half-planes may be found in Θ(N log N) time using the divide and conquer approach[1]. Lee and Preparata[2] presented an algorithm to construct the intersection of interior half-planes in optimal Θ(N) time.

[edit] See also

[edit] References

  1. ^ a b Franco P. Preparata and Michael Ian Shamos (1985). Computational Geometry - An Introduction. Springer-Verlag. 1st edition: ISBN 0-387-96131-3; 2nd printing, corrected and expanded, 1988: ISBN 3-540-96131-3; Russian translation, 1989: ISBN 5-03-001041-6. 
  2. ^ Lee, D. T., Preparata, F.P. (1979) "An Optimal Algorithm for Finding the Kernel of a Polygon", Journal of the ACM, Volume 26 , Issue 3 Pages: 415 - 421


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -