ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Sophomore's dream - Wikipedia, the free encyclopedia

Sophomore's dream

From Wikipedia, the free encyclopedia

Graph of a function  and a region bounded by it in an interval [0,1].
Graph of a function y=1/x^{x}\!\, and a region bounded by it in an interval [0,1].
Graph of a function  and a region bounded by it in an interval [0,1].
Graph of a function y=x^{x}\!\, and a region bounded by it in an interval [0,1].

In mathematics, sophomore's dream is a name occasionally used for the identities

\begin{align}
\int_0^1 x^{-x}\,dx &= \sum_{n=1}^\infty n^{-n}&&(= 1.291285997\dots)\\
\int_0^1 x^x   \,dx &= \sum_{n=1}^\infty (-1)^{n+1}n^{-n} &&(= 0.783430510712\dots)
\end{align}

discovered in 1697 by Johann Bernoulli (especially the first).

The name is in contrast to the "freshman's dream" which is given to the mistake (x + y)n = xn + yn. (The correct result is given by the binomial theorem.) The sophomore's dream names a result with a similarly too-good-to-be-true feel, that

\int_0^1 \frac{1}{x^x}\,dx = \sum_{n=1}^\infty \frac{1}{n^n}.

However, this result is in fact true.

[edit] Proof

We prove the second identity; the first is completely analogous.

The key ingredients of the proof are:

  • Write xx = exp(x ln x).
  • Expand exp(x ln x) using the power series for exp.
  • Integrate termwise.
  • Integrate by parts.

Expand xx as

x^x = \exp(x \ln x) = \sum_{n=0}^\infty \frac{x^n(\ln x)^n}{n!}.

Thus by termwise integration,

\int_0^1 x^xdx = \sum_{n=0}^\infty \int_0^1 \frac{x^n(\ln x)^n}{n!}dx.

Evaluate the terms by integration by parts; integrate \int x^m (\ln x)^n\; dx by taking u = (lnx)n and dv = x^m\; dx, which yields:

\int x^m (\ln x)^n\; dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^{m+1} \frac{(\ln x)^{n-1}}{x} dx  \qquad\mbox{(for }m\neq -1\mbox{)}

(also in the list of integrals of logarithmic functions).

Thus inductively,


\int x^m (\ln x)^n\; dx
= \frac{x^{m+1}}{m+1}
 \cdot \sum_{i=0}^n (-1)^i \frac{(n)_i}{(m+1)^i} (\ln x)^{n-i}

where (n)i denotes the falling factorial.

In this case m=n, and they are an integer, so

\int x^n (\ln x)^n\; dx
= \frac{x^{n+1}}{n+1}
 \cdot \sum_{i=0}^n (-1)^i \frac{(n)_i}{(n+1)^i} (\ln x)^{n-i}

Integrating from 0 to 1, all the terms vanish except the last term at 1 (all the terms vanish at 0 because \lim_{x \to 0^+} x^m (\ln x)^n = 0 by l'Hôpital's rule, and all but the last term vanish at 1 since ln(1) = 0), which yields:

\int \frac{x^n (\ln x)^n}{n!}\; dx
= \frac{1}{n!}\frac{1^{n+1}}{n+1}
 (-1)^n \frac{(n)_n}{(n+1)^n} = (-1)^n (n+1)^{-(n+1)}

Summing these (and changing indexing so it starts at n = 1 instead of n = 0) yields the formula.

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -