ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Sensory ecology - Wikipedia, the free encyclopedia

Sensory ecology

From Wikipedia, the free encyclopedia

Sensory ecology is a relatively new field focusing on the information organisms obtain about their environment.
It includes questions of
what information is obtained,
how it is obtained (the mechanism), and
why the information is useful to the organism (the function).

All individual organisms interact with their environment (consisting of both animate and inanimate components), and exchange materials, energy, and sensory information. Ecology has generally focused on the exchanges of matter and energy, while sensory interactions have generally been studied as influences on behavior and functions of certain physiological systems (sense organs). The relatively new area of sensory ecology has emerged as more researchers focus on questions concerning information in the environment. Most often, what kinds of useful information are available and what information does an organism obtain?

This new focus emphasizes a distinction between matter/energy that can make things happen (like applying forces to move objects or doing work in the sense of thermodynamics) and matter/energy that lead to significant changes only after their effects are amplified (e.g. by electronic amplifiers, sensory systems, or physiological effectors). The former influences constitute causal inputs from the environment to the organism, while the latter constitute informational or sensory inputs to the organism.

For example, light may play a causal role by providing energy to heat an organism, energy for photosynthesis, or (especially in the case of ultraviolet light) cause damage to tissues. In addition, organisms with appropriate sensory systems can respond to light in many other ways, employing it as a source of information. In most cases, sensory systems are so proficient that organisms respond to much lower intensities than are required for significant causal effects, and there is a clear distinction between inputs carrying information and those having causal effects.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -