ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Semisimple algebra - Wikipedia, the free encyclopedia

Semisimple algebra

From Wikipedia, the free encyclopedia

In ring theory, a semisimple algebra is an associative algebra which has trivial Jacobson radical (that is only the zero element of the algebra is in the Jacobson radical). If the algebra is finite dimensional this is equivalent to saying that it that can be expressed as a Cartesian product of simple subalgebras.

[edit] Definition

Given an algebra, its radical is the (unique) nilpotent ideal that contains all nilpotent ideals in the algebra. A finite dimensional algebra is then said to be semi-simple if its radical is {0}, where 0 denotes the zero element of the algebra.

A algebra A is called simple if it has no proper ideals and A2 = {ab | a, bA} ≠ {0}. As the terminology implies, simple algebras are semi-simple. Only possible ideals in a simple algebra are A and {0}. Thus if A is not nilpotent, then A is semisimple. Because A2 is an ideal of A and A is simple, A2 = A. By induction, An = A for every positive integer n, i.e. A is not nilpotent.

Any self-adjoint subalgebra A of n × n matrices with complex entries is semisimple. Let Rad(A) be the radical of A. Suppose a matrix M is in Rad(A). Then M*M lies in some nilpotent ideals of A, therefore (M*M)k = 0 for some positive integer k. By positive-semidefiniteness of M*M, this implies M*M = 0. So M x is the zero vector for all x, i.e. M = 0.

If {Ai} is a finite collection of simple algebras, then their Cartesian product ∏ Ai is semi-simple. If (ai) is an element of Rad(A). Let e1 be the multiplicative identity in A1 (all simple algebras possess a multiplicative identity). Then (a1, a2, ...) · (e1, 0, ...) = (a1, 0..., 0) lies in some nilpotent ideal of ∏ Ai. This implies, for all b in A1, a1b is nilpotent in A1, i.e. a1 ∈ Rad(A1). So a1 = 0. Similarly, ai = 0 for all other i.

It is less apparent from the definition that the converse of the above is also true, that is, any semisimple algebra is isomorphic to a Cartesian product of simple algebras. The following is a semisimple algebra that appears not to be of this form. Let A be an algebra with Rad(A) ≠ A. The quotient algebra B = A ⁄ Rad(A) is semisimple: If J is a nonzero nilpotent ideal in B, then its preimage under the natural projection map is a nilpotent ideal in A which is strictly larger than Rad(A), a contradiction.

[edit] Characterization

Let A be a finite dimensional semisimple algebra, and

\{0\} = J_0 \subset \cdots \subset J_n \subset A

be a composition series of A, then A is isomporphic to the following Cartesian product:

A \simeq J_1 \times J_2/J_1 \times J_3/J_2 \times ... \times J_n/ J_{n-1} \times A / J_n

where each

J_{i+1}/J_i \,

is a simple algebra.

The proof can be sketched as follows. First, invoking the assumption that A is semisimple, one can show that the J1 is a simple algebra (therefore unital). So J1 is a unital subalgebra and an ideal of J2. Therefore one can decompose

J_2 \simeq J_1 \times J_2/J_1 .

By maximality of J1 as an ideal in J2 and also the semisimplicity of A, the algebra

J_2/J_1 \,

is simple. Proceed by induction in similar fashion proves the claim. For example, J3 is the Cartesian product of simple algebras

J_3 \simeq J_2 \times J_3 / J_2 \simeq J_1 \times J_2/J_1 \times J_3 / J_2.

The above result can be restated in a different way. For a semisimple algebra A = A1 ×...× An expressed in terms of its simple factors, consider the units eiAi. The elements Ei = (0,...,ei,...,0) are idempotents in A and they lie in the center of A. Furthermore, Ei A = Ai, EiEj = 0 for ij, and Σ Ei = 1, the multiplicative identity in A.

Therefore, for every semisimple algebra A, there exists idempotents {Ei} in the center of A, such that

  1. EiEj = 0 for ij (such a set of idempotents is called orthogonal),
  2. Σ Ei = 1,
  3. A is isomorphic to the Cartesian product of simple algebras E1 A ×...× En A.

[edit] Classification

The Artin–Wedderburn theorem completely classifies semisimple algebras: they are isomorphic to a product  \prod M_{n_i}(D_i) where the ni are some integers, the Di are division rings, and  M_{n_i}(D_i) means the ring of  n_i \times n_i matrices over Di. This product is unique up to permutation of the factors.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -