ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Talk:Self-phase modulation - Wikipedia, the free encyclopedia

Talk:Self-phase modulation

From Wikipedia, the free encyclopedia

WikiProject Physics This article is within the scope of WikiProject Physics, which collaborates on articles related to physics.
??? This article has not yet received a rating on the assessment scale. [FAQ]
??? This article has not yet received an importance rating within physics.

Help with this template Please rate this article, and then leave comments to explain the ratings and/or to identify its strengths and weaknesses.

"This variation in refractive index will produce a phase shift in the pulse, leading to a symmetric broadening of the pulse's frequency spectrum." This is only true for symmetric pulses where the current chirp has the same sign as n2. In all other cases SPM only results in a change of the spectrum. I was very suprised the first time I propagated a negatively chirped pulse into a positive n2 material. The spectrum got narrower. --Erik Zeek 20:06, 1 December 2005 (UTC)


Re-writing the article because I don't think the derivation below is correct. In particular the frequency shift doesn't seem to have the correct form. --Bob Mellish 00:41, 4 November 2005 (UTC)

[edit] Original derivation

\Phi_{nl}(t)=-\delta n  \cdot l \cdot {\omega_0 \over c}

where n is the refractive index, l is the propagation distance in the medium, c is the velocity of light in vacuum and ω0 is the carrier-frequency of the pulse.

\delta n=n_2 \cdot I(t)^2

is the second order change of the nonlinear refractive index. The instantaneous frequency is given by

ω(t) = ω0 + δω(t)

with

 \delta \omega (t)={{d \Phi_{nl} (t)} \over dt}

being the phase velocity. In case of a common hyperbolic secant pulse shape the intensity is given by

I(t)=I_0 \cdot \operatorname{sech}^2({t \over {\tau_0}})

Therefore the nonlinear phase of this pulse becomes

\Phi_{nl(t)}=-n_2 \cdot l{\omega_0 \over c} \cdot l_0 \cdot \operatorname{sech}({t \over {\tau_0}})

and the instantaneous frequency is shifted by the term

\delta \omega (t)=2 \cdot n_2 \cdot l \cdot {{\omega_0} \over {c \cdot \tau_0}} \cdot I_0 \cdot \operatorname{sech}^2({t \over {\tau_0}})


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -