ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Selberg zeta function - Wikipedia, the free encyclopedia

Selberg zeta function

From Wikipedia, the free encyclopedia

The Selberg zeta-function was introduced by Atle Selberg in the 1950s. It is analogous to the famous Riemann zeta function :
\zeta(s) = \prod_{p\in\mathbb{P}} \frac{1}{1-p^{-s}}
where  \mathbb{P} is the set of prime numbers. The Selberg zeta-function uses the lengths of simple closed geodesics instead of the primes numbers.

For any hyperbolic surface of finite area there is an associated Selberg zeta-function; this function is a meromorphic function defined in the complex plane. The zeta function is defined in terms of the closed geodesics of the surface.

The zeros and poles of the Selberg zeta-function, Z(s), can be described in terms of spectral data of the surface.

The zeros are at the following points:

  1. For every cusp form with eigenvalue s0(1 − s0) there exists a zero at the point s0. The order of the zero equals the dimension of the corresponding eigenspace. (A cusp form is an eigenfunction to the Laplace-Beltrami operator which has Fourier expansion with zero constant term.)
  2. The zeta-function also has a zero at every pole of the determinant of the scattering matrix, φ(s). The order of the zero equals the order of the corresponding pole of the scattering matrix.

The zeta-function also has poles at  1/2 - \mathbb{N} , and can have zeros or poles at the points  - \mathbb{N} .

[edit] Selberg zeta-function for the modular group

For the case where the surface is  \Gamma \backslash \mathbb{H}^2 , where Γ is the modular group, the Selberg zeta-function is of special interest. For this special case the Selberg zeta-function is intimately connected to the Riemann zeta-function.

In this case the scattering matrix is given by:

 \varphi(s) =  \pi^{1/2} \frac{ \Gamma(s-1/2) \zeta(2s-1) }{ \Gamma(s) \zeta(2s) }.

In particular, we see that if the Riemann zeta-function has a zero at s0, then the scattering matrix has a pole at s0 / 2, and hence the Selberg zeta-function has a zero at s0 / 2.

[edit] Bibliography

  • Hejhal, D. A. The Selberg trace formula for PSL(2,R). Vol. 2, Springer-Verlag, Berlin, 1983.
  • Iwaniec, H. Spectral methods of automorphic forms, American Mathematical Society, second edition, 2002.
  • Venkov, A. B. Spectral theory of automorphic functions. Proc. Steklov. Inst. Math, 1982.
This number theory-related article is a stub. You can help Wikipedia by expanding it.
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -