ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Talk:RL circuit - Wikipedia, the free encyclopedia

Talk:RL circuit

From Wikipedia, the free encyclopedia

[edit] Complex Impedance Methods

What if the input signal is not a pure sinusoid? Why is the article restricting the frequency domain analysis only to pure imagnary frequencies? There is a much more general form involving Laplace transforms where, instead of using

 Z_L \ = \  j \omega L

the complex impedance is

 Z_L  \ = \  Ls

where s is a complex number

 s \ = \ \sigma + j \omega


Sinusoidal steady state is then a special case where

 \sigma \ = \ 0

and

 s \ = \  j \omega


This approach then enables you to use some interesting and powerful techniques:

  • Solution of the differential equations using polynomial functions of s
  • Laplace transfomations of inputs and outputs to derive complex valued functions in terms of s
  • Analysis using complex valued transfer functions, also in terms of s, that are simple ratios of the complex valued input and output functions
  • Identification of poles and zeros of the transfer functions, and plotting the poles and zeros in the complex s-plane
  • Calculation of gain as the magnitude of the transfer function and phase angle as the argument of the transfer function.
  • Frequency domain analysis involving not only pure sinusoids but also damped sinusoids
  • Fourier decomposition and analysis of arbitrary (non-sinusoidal) signal inputs and outputs.


-- Rdrosson 12:45, 4 November 2005 (UTC)


If you look slightly further down the page, you'll see that Laplace domain stuff is included there. -Splashtalk 12:52, 4 November 2005 (UTC)


Yes, I see what you are saying. But actually, the article barely scratches the surface of these ideas, and everything prior to the mention of Laplace Transforms can be vastly simplified by a much more general and elegant set of techniques. If you read the the list of bullet points I created (above), I don't see any of these concepts other than one brief mention of Laplace Transforms in the article. Furthermore, even the discussion of Laplace misses the key point: you don't need to restrict the input signals to sinusoids -- you can represent and analyze the behavior for virtually any input signal . -- Rdrosson 20:09, 4 November 2005 (UTC)


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -