ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Reversible dynamics - Wikipedia, the free encyclopedia

Reversible dynamics

From Wikipedia, the free encyclopedia

For reversibility in thermodynamics, see reversible process (thermodynamics).
For further meanings of reversibility, see reversibility (disambiguation).

Contents

[edit] Mathematics

In mathematics, a dynamical system is invertible if the forward evolution is one-to-one, not many-to-one; so that for every state there exists a well-defined reverse-time evolution operator.

The dynamics are time-reversible if there exists a transformation (an involution) π which gives a one-to-one mapping between the time-reversed evolution of any one state, and the forward-time evolution of another corresponding state, given by the operator equation:

U_{-t} = \pi \, U_{t}\, \pi

Any time-independent structures (for example critical points, or attractors) which the dynamics gives rise to must therefore either be self-symmetrical or have symmetrical images under the involution π.

[edit] Physics

In physics, the laws of motion of classical mechanics have the above property, if the operator π reverses the conjugate momenta of all the particles of the system, p -> -p . (T-symmetry).

In quantum mechanical systems, it turns out that the weak nuclear force is not invariant under T-symmetry alone. If weak interactions are present, reversible dynamics are still possible, but only if the operator π also reverses the signs of all the charges, and the parity of the spatial co-ordinates (C-symmetry and P-symmetry).

[edit] Stochastic processes

A stochastic process is reversible if the statistical properties of the process are the same as the statistical properties for time-reversed data from the same process. More formally, for all sets of time increments { τs }, where s = 1..k for any k, the joint probabilities

p(x_t, x_{t+\tau_{1}}, x_{t+\tau_{2}} .. x_{t+\tau_{k}}) = p(x_{t'}, x_{t'-\tau_{1}}, 
x_{t'-\tau_{2}} .. x_{t'-\tau_{k}})

A simple consequence for Markov processes is that they can only be reversible if their stationary distributions have the property

p(x_t=i,x_{t+1}=j) = \,p(x_t=j,x_{t+1}=i)

This is called the property of detailed balance.

[edit] See also


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -