ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
User:Rajagiryes - Wikipedia, the free encyclopedia

User:Rajagiryes

From Wikipedia, the free encyclopedia

Invariant Estimator is an intuitively appealing non Bayesian estimator. It is also sometimes called an "equivariant estimator". In the estimation problem we have random vector x from space X with density function f(x | θ) when θ is from the space Θ. We want to estimate θ given set of measurements from the distribution f(x | θ). The estimation is denoted by a, is a function of the measurements and is in the space A. The quality of the result is defined by a loss function L = L(a,θ) which determine a risk function R = R(a,θ) = E[L(a,θ) | θ].

Generally speaking invariant estimator is an estimator that obey the 2 following rules:

1. Principle of Rational Invariance: The action taken in a decision problem should not depend on transformation on the measurement used

2. Invariance Principle: If two decision problems have the same formal structure (in terms of X, Θ, f(x | θ) and L) then the same decision rule should be used in each problem

To define invariant estimator formally we will first set some definitions about groups of transformations:

Contents

[edit] Invariant Estimation Problem and Invariant Estimator

A group of transformation of X, to be denoted by G is a set of (measurable) 1:1 and onto transformation of X into itself, which satisfies the following conditions:

1. If g_1\in G and g_2\in G then g_1,g_2\in G

2. If g\in G then g^{-1}\in G (g − 1(g(x)) = x)

3. e\in G (e(x) = x)

x1 and x2 in X are equivalent if x1 = g(x2) for some g\in G. All the equivalent points form an equivalence class. Such equivalence class is called orbit (in X). The x0 orbit, X(x0), is the set X(x_0)=\{g(x_0):g\in G\}. If X consist of a single orbit than g is said to be transitive.

A family of densities F is said to be invariant under the group G if, for every g\in G and \theta\in \Theta there exists a unique \theta^*\in  \Theta such that Y = g(x) has density f(y | θ * ). θ * will be denoted \bar{g}(\theta).

If F is invariant under the group G than the loss function L(θ,a) is said to be invariant under G if for every g\in G and a\in A there exists an a^*\in A such that L(\theta,a)=L(\bar{g}(\theta),a^*) for all \theta \in \Theta. a * will be denoted \tilde{g}(a).

\bar{G}=\{\bar{g}:g\in G\} is a group of transformations from Θ to itself and \tilde{G}=\{\tilde{g}: g \in G\} is a group of transformations from A to itself.

An estimation problem is invariant under G if there exists such three groups G, \bar{G}, \tilde{G}.

For an estimation problem that is invariant under G, estimator δ(x) is invariant estimator under G if for all x\in X and g\in G \delta(g(x)) = \tilde{g}(\delta(x)).

[edit] Properties of Invariant Estimators

1. The risk function of an invariant estimator δ is constant on orbits of Θ. Equivalently R(\theta,\delta)=R(\bar{g}(\theta),\delta) for all \theta \in \Theta and \bar{g}\in \bar{G}.

2. The risk function of an invariant estimator with transitive \bar{g} is constant.

For a given problem the invariant estimator with the lowest risk is termed the "best invariant estimator". Best invariant estimator cannot be achieved always. A special case for which it can be achieved is the case when \bar{g} is transitive.

[edit] Location Parameter Problem Example

θ is a location parameter if the density of X is f(x − θ). For  \Theta=A=\Bbb{R}^1 and L = L(a − θ) the problem is invariant under g=\bar{g}=\tilde{g}=\{g_c:g_c(x)=x+c, c\in \Bbb{R}\}. The invariant estimator in this case must satisfy \delta(x+c)=\delta(x)+c, \forall c\in \Bbb{R} thus it is of the form δ(x) = x + K (K\in \Bbb{R}). \bar{g} is transitive on Θ so we have here constant risk: R(θ,δ) = R(0,δ) = E[L(X + K) | θ = 0]. The best invariant estimator is the one that bring the risk R(θ,δ) to minimum.

In the case that L is squared error δ(x) = xE[X | θ = 0]

[edit] Pitman Estimator

Given the estimation problem: X=(X_1,\dots,X_n) that has density f(x_1-\theta,\dots,x_n-\theta) and loss L( | a − θ | ). This problem is invariant under G=\{g_c:g_c(x)=(x_1+c, \dots, x_n+c),c\in \Bbb{R}^1\}, \bar{G}=\{g_c:g_c(\theta)=\theta + c,c\in \Bbb{R}^1\} and \tilde{G}=\{g_c:g_c(a)=a + c,c\in \Bbb{R}^1\} (additive groups).

The best invariant estimator δ(x) is the one that minimize \frac{\int_{-\infty}^{\infty}{L(\delta(x)-\theta)f(x_1-\theta,\dots,x_n-\theta)d\theta}}{\int_{-\infty}^{\infty}{f(x_1-\theta,\dots,x_n-\theta)d\theta}} (Pitman's estimator, 1939).

For the square error loss case we get that \delta(x)=\frac{\int_{-\infty}^{\infty}{\theta f(x_1-\theta,\dots,x_n-\theta)d\theta}}{\int_{-\infty}^{\infty}{f(x_1-\theta,\dots,x_n-\theta)d\theta}}

If x \sim N(\theta 1_n,I)\,\! than \delta_{pitman} = \delta_{ML}=\frac{\sum{x_i}}{n}

If x \sim C(\theta 1_n,I)\,\! than \delta_{pitman} \ne \delta_{ML} and \delta_{pitman}=\sum_{k=1}^n{x_k[\frac{Re\{w_k\}}{\sum_{m=1}^{n}{Re\{w_k\}}}]},n>1 when w_k = \prod_{j\ne k}[\frac{1}{(x_k-x_j)^2+4\sigma^2}][1-\frac{2\sigma}{(x_k-x_j)}i]

[edit] References

  • James O. Berger Statistical Decision Theory and Bayesian Analysis. 1980. Springer Series in Statistics. ISBN 0-387-90471-9.
  • The Pitman estimator of the Cauchy location parameter, Gabriela V. Cohen Freue, Journal of Statistical Planning and Inference 137 (2007) 1900 – 1913


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -