ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Quaternion-Kähler manifold - Wikipedia, the free encyclopedia

Quaternion-Kähler manifold

From Wikipedia, the free encyclopedia

In differential geometry, a quaternion-Kähler manifold (or quaternionic Kähler manifold) is a Riemannian manifold whose Riemannian holonomy group is a subgroup of Sp(n)·Sp(1).

Another, more explicit, definition, uses a 3-dimensional subbundle H of End(TM) of endomorphisms of the tangent bundle to a Riemannian M. For M to be quaternion-Kähler, H should be preserved by the Levi-Civita connection and pointwise isomorphic to the imaginary quaternions, in such a way that unit imaginary quaternions in H act on TM preserving the metric.

Notice that this definition includes hyperkähler manifolds. However, these are often excluded from the definition of a quaternion-Kähler manifold by imposing the condition that the scalar curvature is nonzero, or that the holonomy group is equal to Sp(n)·Sp(1).

Contents

[edit] Ricci curvature

Quaternion-Kähler manifolds appear in Berger's list of Riemannian holonomies as the only manifolds of special holonomy with non-zero Ricci curvature. In fact, these manifolds are Einstein.

If an Einstein constant of a quaternion-Kähler manifold is zero, it is hyperkähler. This case is often excluded from the definition. That is, quaternion-Kähler is defined as one with holonomy reduced to Sp(n)·Sp(1) and with non-zero Ricci curvature (which is constant).

Quaternion-Kähler manifolds divide naturally into those with positive and negative Ricci curvature.

[edit] Examples

There are no examples of compact quaternion-Kähler manifolds which are not locally symmetric or hyperkähler. Symmetric quaternion-Kähler manifolds are known as Wolf spaces. For any simple Lie group G, there is a unique Wolf space G/K obtained as a quotient of G by a subgroup

 K = K_0 \cdot SU(2) .

Here, SU(2) is the subgroup associated with the highest root of G, and K0 is its centralizer in G. The Wolf spaces with positive Ricci curvature are compact and simply connected.

If G is Sp(n+1), the corresponding Wolf space is the quaternionic projective space

\mathbb H P^n.

It can be identified with a space of quaternionic lines in Hn+1.

It is conjectured that all quaternion-Kähler manifolds with positive Ricci curvature are symmetric.

[edit] Twistor spaces

Questions about quaternion-Kähler manifolds of positive Ricci curvature can be translated into the language of algebraic geometry using the methods of twistor theory (this approach is due to Penrose and Salamon). Let M be a quaternionic-Kähler manifold, and H the corresponding subbundle of End(TM), pointwise isomorphic to the imaginary quaternions. Consider the corresponding S2-bundle S of all h in H satisfying h2 = -1. The points of S are identified with the complex structures on its base. Using this, it is can be shown that the total space Z of S is equipped with an almost complex structure.

Salamon proved that this almost complex structure is integrable, hence Z is a complex manifold. When the Ricci curvature of M is positive, Z is a projective Fano manifold, equipped with a holomorphic contact structure.

The converse is also true: a projective Fano manifold which admits a holomorphic contact structure is always a twistor space, hence quaternion-Kähler geometry with positive Ricci curvature is essentially equivalent to the geometry of holomorphic contact Fano manifolds.

[edit] References

  1. Salamon, S., Quaternionic Kähler manifolds, Inv. Math. 67 (1982), 143-171.
  2. Besse, A., Einstein Manifolds, Springer-Verlag, New York (1987)
  3. Joyce, D., Compact manifolds with special holonomy, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -