ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Probability mass function - Wikipedia, the free encyclopedia

Probability mass function

From Wikipedia, the free encyclopedia

The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1.
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1.

In probability theory, a probability mass function (abbreviated pmf) is a function that gives the probability that a discrete random variable is exactly equal to some value. A pmf differs from a probability density function (abbreviated pdf) in that the values of a pdf, defined only for continuous random variables, are not probabilities as such. Instead, the integral of a pdf over a range of possible values (a, b] gives the probability of the random variable falling within that range.

[edit] Mathematical description

The probability mass function of a fair die. All the numbers on the die have an equal chance of appearing on top when the die is rolled.
The probability mass function of a fair die. All the numbers on the die have an equal chance of appearing on top when the die is rolled.

Suppose that X is a discrete random variable, taking values on some countable sample space  SR. Then the probability mass function  fX(x)  for X is given by

f_X(x) = \begin{cases} \Pr(X = x), &x\in S,\\0, &x\in \mathbb{R}\backslash S.\end{cases}

Note that this explicitly defines  fX(x)  for all real numbers, including all values in R that X could never take; indeed, it assigns such values a probability of zero.

The discontinuity of probability mass functions reflects the fact that the cumulative distribution function of a discrete random variable is also discontinuous. Where it is differentiable (i.e. where xR\S) the derivative is zero, just as the probability mass function is zero at all such points.

[edit] Example

Suppose that X is the outcome of a single coin toss, assigning 0 to tails and 1 to heads. The probability that X = x is 0.5 on the state space {0, 1} (this is a Bernoulli random variable), and hence the probability mass function is

f_X(x) = \begin{cases}\frac{1}{2}, &x \in \{0, 1\},\\0, &x \in \mathbb{R}\backslash\{0, 1\}.\end{cases}

[edit] See also


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -