ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Prékopa-Leindler inequality - Wikipedia, the free encyclopedia

Prékopa-Leindler inequality

From Wikipedia, the free encyclopedia

In mathematics, the Prékopa-Leindler inequality is an integral inequality closely related to the reverse Young's inequality, the Brunn-Minkowski inequality and a number of other important and classical inequalities in analysis. The result is named after the Hungarian mathematicians Prékopa András and Leindler László.

Contents

[edit] Statement of the inequality

Let 0 < λ < 1 and let f, g, h : Rn → [0, +∞) be non-negative real-valued measurable functions defined on n-dimensional Euclidean space Rn. Suppose that these functions satisfy

h \left( (1 - \lambda) x + \lambda y \right) \geq f(x)^{1 - \lambda} g(y)^{\lambda}

for all x and y in Rn. Then

\int_{\mathbb{R}^{n}} h(x) \, \mathrm{d} x \geq \left( \int_{\mathbb{R}^{n}} f(x) \, \mathrm{d} x \right)^{1 - \lambda} \left( \int_{\mathbb{R}^{n}} g(x) \, \mathrm{d} x \right)^{\lambda}.

[edit] Essential form of the inequality

Recall that the essential supremum of a measurable function f : Rn → R is defined by

\mathop{\mathrm{ess\,sup}}_{x \in \mathbb{R}^{n}} f(x) = \inf \left\{ t \in [- \infty, + \infty] | f(x) \leq t \mbox{ for almost all } x \in \mathbb{R}^{n} \right\}.

This notation allows the following essential form of the Prékopa-Leindler inequality: let 0 < λ < 1 and let f, g ∈ L1(Rn; [0, +∞)) be non-negative absolutely integrable functions. Let

s(x) = \mathop{\mathrm{ess\,sup}}_{y \in \mathbb{R}^{n}} f \left( \frac{x - y}{1 - \lambda} \right)^{1 - \lambda} g \left( \frac{y}{\lambda} \right)^{\lambda}.

Then s is measurable and

\| s \|_{1} \geq \| f \|_{1}^{1 - \lambda} \| g \|_{1}^{\lambda}.

[edit] Relationship to the Brunn-Minkowski inequality

It can be shown that the usual Prékopa-Leindler inequality implies the Brunn-Minkowski inequality in the following form: if 0 < λ < 1 and A and B are bounded, measurable subsets of Rn such that the Minkowski sum (1 − λ)A + λB is also measurable, then

\mu \left( (1 - \lambda) A + \lambda B \right) \geq \mu (A)^{1 - \lambda} \mu (B)^{\lambda},

where μ denotes n-dimensional Lebesgue measure. Hence, the Prékopa-Leindler inequality can also be used to prove the Brunn-Minkowski inequality its more familiar form: if 0 < λ < 1 and A and B are non-empty, bounded, measurable subsets of Rn such that (1 − λ)A + λB is also measurable, then

\mu \left( (1 - \lambda) A + \lambda B \right)^{1 / n} \geq (1 - \lambda) \mu (A)^{1 / n} + \lambda \mu (B)^{1 / n}.

[edit] References


This mathematical analysis-related article is a stub. You can help Wikipedia by expanding it.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -