ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Poisson random measure - Wikipedia, the free encyclopedia

Poisson random measure

From Wikipedia, the free encyclopedia

Let (E, \mathcal A, \mu) be some measurable space with σ-finite measure μ. The Poisson random measure with intensity measure μ is a family of random variables \{N_A\}_{A\in\mathcal{A}} defined on some probability space (\Omega, \mathcal F, \mathrm{P}) such that

i) \forall A\in\mathcal{A}\;N_A is a Poisson random variable with rate μ(A).

ii) If sets A_1,A_2,\ldots,A_n\in\mathcal{A} don't intersect then the corresponding random variables from i) are mutually independent.

iii) \forall\omega\in\Omega\;N_{\bullet}(\omega) is a measure on (E, \mathcal A)

[edit] Existence

If \mu\equiv 0 then N\equiv 0 satisfies the conditions i)-iii). Otherwise, in the case of finite measure μ given Z - Poisson random variable with rate μ(E) and X_1, X_2,\ldots - mutually independent random variables with distribution \frac{\mu}{\mu(E)} define N_{\bullet}(\omega) = \sum\limits_{i=1}^{Z(\omega)} \delta_{X_i(\omega)}(\bullet) where δc(A) is a degenerate measure located in c. Then N will be a Poisson random measure. In the case μ is not finite the measure N can be obtained from the measures constructed above on parts of E where μ is finite.

[edit] Applications

This kind of random measures ist often used when describing jumps of stochastic processes, in particular in Lévy-Itō decomposition of the Lévy processes.

[edit] References

  • Sato K. Lévy Processes and Infinitely Divisible Distributions Cambridge University Press, (1st ed.) ISBN 0-521-55302-4.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -