ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Perron's formula - Wikipedia, the free encyclopedia

Perron's formula

From Wikipedia, the free encyclopedia

In mathematics, and more particularly in analytic number theory, Perron's formula is a formula due to Oskar Perron to calculate the sum of an arithmetical function, by means of an inverse Mellin transform.

Contents

[edit] Statement

Let {a(n)} be an arithmetic function, and let

 g(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}

be the corresponding Dirichlet series. Presume the Dirichlet series to be absolutely convergent for \Re(s)>\sigma_a. Then Perron's formula is

 A(x) = {\sum_{n\le x}}^{\star} \frac{a(n)}{n^s}  
=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty} dz\; g(s+z)\frac{x^{z}}{z}

Here, the star on the summation indicates that the last term of the sum must be multiplied by 1/2 when x is an integer. The formula requires c > 0 and x > 0 real, but otherwise arbitrary. The formula holds for \Re(s)>\sigma_a - c

[edit] Proof

An easy sketch of the proof comes from taking the Abel's sum formula

 g(s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s} }=s\int_{0}^{\infty} dx A(x)x^{-(s+1) }.

This is nothing but a Laplace transform under the variable change x = et. Inverting it one gets the Perron's formula.

[edit] Examples

Because of its general relationship to Dirichlet series, the formula is commonly applied to many number-theoretic sums. Thus, for example, one has the famous integral representation for the Riemann zeta function:

\zeta(s)=s\int_1^\infty \frac{\lfloor x\rfloor}{x^{s+1}}\,dx

and a similar formula for Dirichlet L-functions:

L(s,\chi)=s\int_1^\infty \frac{A(x)}{x^{s+1}}\,dx

where

A(x)=\sum_{n\le x} \chi(n)

and χ(n) is a Dirichlet character. Other examples appear in the articles on the Mertens function and the von Mangoldt function.

[edit] References

[edit] Multivariable generalization

A generalization of this formula to the multivariable setting as been announced by Peter Swinnerton-Dyer in 2007.

Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -