ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Path (topology) - Wikipedia, the free encyclopedia

Path (topology)

From Wikipedia, the free encyclopedia

The points traced by a path from A to B in R². However, different paths can trace the same set of points.
The points traced by a path from A to B in R². However, different paths can trace the same set of points.

In mathematics, a path in a topological space X is a continuous map f from the unit interval I = [0,1] to X

f : IX.

The initial point of the path is f(0) and the terminal point is f(1). One often speaks of a "path from x to y" where x and y are the initial and terminal points of the path. Note that a path is not just a subset of X which "looks like" a curve, it also includes a parametrization. For example, the maps f(x) = x and g(x) = x2 represent two different paths from 0 to 1 on the real line.

A loop in a space X based at xX is a path from x to x. A loop may be equally well regarded as a map f : IX with f(0) = f(1) or as a continuous map from the unit circle S1 to X

f : S1X.

This is because S1 may be regarded as a quotient of I under the identification 0 ∼ 1. The set of all loops in X forms a space called the loop space of X.

A topological space for which there exists a path connecting any two points is said to be path-connected. Any space may be broken up into a set of path-connected components. The set of path-connected components of a space X is often denoted π0(X);.

One can also define paths and loops in pointed spaces, which are important in homotopy theory. If X is a topological space with basepoint x0, then a path in X is one whose initial point in x0. Likewise, a loop in X is one that is based at x0.

[edit] Homotopy of paths

Main article: Homotopy
A homotopy between two paths.
A homotopy between two paths.

Paths and loops are central subjects of study in the branch of algebraic topology called homotopy theory. A homotopy of paths makes precise the notion of continuously deforming a path while keeping its endpoints fixed.

Specifically, a homotopy of paths in X is a family of paths ft : IX such that

  • ft(0) = x0 and ft(1) = x1 are fixed.
  • the map F : I × IX given by F(s, t) = ft(s) is continuous.

The paths f0 and f1 connected by a homotopy are said to homotopic. One can likewise define a homotopy of loops keeping the base point fixed.

The property of being homotopic defines an equivalence relation on paths in a topological space. The equivalence class of a path f under this relation is called the homotopy class of f, often denoted [f].

[edit] Path composition

One can compose paths in a topological space in an obvious manner. Suppose f is a path from x to y and g is a path from y to z. The path fg is defined as the path obtained by first traversing f and then traversing g:

fg(s) = \begin{cases}f(2s) & 0\leq s \leq \frac{1}{2} \\ g(2s-1) & \frac{1}{2} \leq s \leq 1\end{cases}

Clearly path composition is only defined when the terminal point of f coincides with the initial point of g. If one considers all loops based at a point x0, then path composition is a binary operation.

Path composition, whenever defined, is not associative due to the difference in parametrization. It is associative at the level of homotopy however. That is, [(fg)h] = [f(gh)]. Path composition defines a group structure on the set of homotopy classes of loops based at a point x0 in X. The resultant group is called the fundamental group of X based at x0, usually denoted π1(X,x0).

[edit] Fundamental groupoid

There is a categorical picture of paths which is sometimes useful. Any topological space X can be viewed as a category where the objects are the points of X and the morphisms are the homotopy classes of paths. Since any morphism in this category is an isomorphism this category is a groupoid, called the fundamental groupoid of X. Loops in this category are the endomorphisms (all of which are actually automorphisms). The automorphism group of a point x0 in X is just the fundamental group based at X.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -