ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Monoid (category theory) - Wikipedia, the free encyclopedia

Monoid (category theory)

From Wikipedia, the free encyclopedia

In category theory, a monoid (or monoid object) (M,μ,η) in a monoidal category C is an object M together with two morphisms

  • \mu : M\otimes M\to M called multiplication,
  • and \eta : I\to M called unit,

such that the diagrams

Image:Monoid_mult.png and Image:Monoid_unit.png

commute. In the above notations, I is the unit element and α, λ and ρ are respectively the associativity, the left identity and the right identity of the monoidal category C.

Dually, a comonoid in a monoidal category C is a monoid in the dual category \mathbf{C}^{\mathrm{op}}.

Suppose that the monoidal category C has a symmetry γ. A monoid M in C is symmetric when

\mu\circ\gamma=\mu.

Contents

[edit] Examples

  • A monoid object in Set (with the monoidal structure induced by the cartesian product) is a monoid in the usual sense.
  • A monoid object in Top (with the monoidal structure induced by the product topology) is a topological monoid.
  • A monoid object in the category of monoids (with the direct product of monoids) is just a commutative monoid. This follows easily from the Eckmann–Hilton theorem.
  • A monoid object in the category of complete join-semilattices Sup (with the monoidal structure induced by the cartesian product) is a unital quantale.
  • A monoid object in (Ab, ⊗Z, Z) is a ring.
  • For a commutative ring R, a monoid object in (R-Mod, ⊗R, R) is an R-algebra.
  • A monoid object in K-Vect (again, with the tensor product) is a K-algebra, a comonoid object is a K-coalgebra.
  • For any category C, the category [C,C] of its endofunctors has a monoidal structure induced by the composition. A monoid object in [C,C] is a monad on C.

[edit] Categories of monoids

Given two monoids (M,μ,η) and (M',μ',η') in a monoidal category C, a morphism f:M\to M' is a morphism of monoids when

  • f\circ\mu = \mu'\circ(f\otimes f),
  • f\circ\eta = \eta'.

The category of monoids in C and their monoid morphisms is written \mathbf{Mon}_\mathbf{C}.

[edit] See also

  • monoid (non-categorical definition)
  • Act-S, the category of monoids acting on sets

[edit] References

  • Mati Kilp, Ulrich Knauer, Alexander V. Mikhalov, Monoids, Acts and Categories (2000), Walter de Gruyter, Berlin ISBN 3-11-015248-7


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -