ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Monge cone - Wikipedia, the free encyclopedia

Monge cone

From Wikipedia, the free encyclopedia

In the mathematical theory of partial differential equations (PDE), the Monge cone is a geometrical object associated to a first-order equation. It is named for Gaspard Monge. In two dimensions, let

F(x,y,u,u_x,u_y) = 0\qquad\qquad (1)

be a PDE for an unknown real-valued function u in two variables x and y. Assume that this PDE is non-degenerate in the sense that F_{u_x} and F_{u_y} are not both zero in the domain of definition. Fix a point (x0, y0, z0) and consider solution functions u which have

z_0 = u(x_0, y_0).\qquad\qquad (2)

Each solution to (1) satisfying (2) determines the tangent plane to the graph

z = u(x,y)\,

through the point (x0,y0,z0). As the pair (p, q) solving (1) varies, the tangent planes envelope a cone in R3 with vertex at (x0,y0,z0), called the Monge cone. When F is quasilinear, the Monge cone degenerates to a single line called the Monge axis. (Otherwise, the Monge cone is a true cone since a nontrivial and non-coaxial one-parameter family of planes through a fixed point envelopes a cone.)

As the base point (x0,y0,z0) varies, the cone also varies. Thus the Monge cone is a cone field on R3. Finding solutions of (1) can thus be interpreted as finding a surface which is everywhere tangent to the Monge cone at the point. This is the method of characteristics.

The technique generalizes to scalar first-order partial differential equations in n spatial variables; namely,

F\left(x_1,\dots,x_n,u,\frac{\partial u}{\partial x_1},\dots,\frac{\partial u}{\partial x_n}\right) = 0.

Through each point (x_1^0,\dots,x_n^0, z^0), the Monge cone (or axis in the quasilinear case) is the envelop of solutions of the PDE with u(x_1^0,\dots,x_n^0) = z^0.

[edit] See also

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -