ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Minimum mean square error - Wikipedia, the free encyclopedia

Minimum mean square error

From Wikipedia, the free encyclopedia

In statistics and signal processing, a minimum mean square error (MMSE) estimator describes the approach which minimizes the mean square error (MSE), which is a common measure of estimator quality. The term MMSE specifically refers to estimation in a Bayesian setting, since in the opposing frequentist setting there does not exist a single estimator having minimal MSE.

Contents

[edit] Definition

Let X be an unknown random variable, and let Y be a known random variable (the measurement). An estimator \hat{X}(y) is any function of the measurement Y, and its MSE is given by

\mathrm{MSE} = E \left\{ (\hat{X} - X)^2 \right\}

where the expectation is taken over both X and Y.

The MMSE estimator is then defined as the estimator achieving minimal MSE.

In many cases, it is not possible to determine a closed form for the MMSE estimator. In these cases, one possibility is to seek the technique minimizing the MSE within a particular class, such as the class of linear estimators. The linear MMSE estimator is the estimator achieving minimum MSE among all estimators of the form AY + b. If the measurement Y is a random vector, A is a matrix and b is a vector. (Such an estimator would more correctly be termed an "affine MMSE" estimator, but the term linear estimator is widely used.)

[edit] Properties

  • Under some weak regularity assumptions,[1] the MMSE estimator is uniquely defined, and is given by
\hat{X}_{\mathrm{MMSE}}(y) = E \left\{ X | Y=y \right\}.
In other words, the MMSE estimator is the conditional expectation of X given the observed value of the measurements.
  • If X and Y are jointly Gaussian, then the MMSE estimator is linear. As a consequence, to find the MMSE estimator, it is sufficient to find the linear MMSE estimator. Such a situation occurs in the example presented in the next section.
  • The orthogonality principle: An estimator \hat{X} is MMSE if and only if
E \{ (\hat{X}-X) f(Y) \} = 0
for all functions f(Y) of the measurements. A different version of the orthogonality principle exists for linear MMSE estimators.

[edit] Example

An example can be shown by using a linear combination of random variable estimates X1,X2 and X3 to estimate another random variable X4 using \hat X_{4}. If the random variables X = [X1,X2,X3,X4]T are real Gaussian random variables with zero mean and covariance given by


cov(X)=E[XX^{T}]=\left[\begin{array}{cccc}
1 & 2 & 3 & 4\\
2 & 5 & 8 & 9\\
3 & 8 & 6 & 10\\
4 & 9 & 10 & 15\end{array}\right],

we will estimate the vector X4 and find coefficients ai such that the estimate \hat X_{4}=\sum_{i=1}^{3}a_{i}X_{i} is an optimal estimate of X4. We will use the autocorrelation matrix, R, and the cross correlation matrix, C, to find vector A, which consists of the coefficient values that will minimize the estimate. Autocorrelation matrix R is defined as

R=\left[\begin{array}{ccc}
E[X_{1},X_{1}] & E[X_{2},X_{1}] & E[X_{3},X_{1}]\\
E[X_{1},X_{2}] & E[X_{2},X_{2}] & E[X_{3},X_{2}]\\
E[X_{1},X_{3}] & E[X_{2},X_{3}] & E[X_{3},X_{3}]\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3\\
2 & 5 & 8\\
3 & 8 & 6\end{array}\right].

Cross correlation matrix C is defined as

C=\left[\begin{array}{c}
E[X_{4},X_{1}]\\
E[X_{4},X_{2}]\\
E[X_{4},X_{3}]\end{array}\right]=\left[\begin{array}{c}
4\\
9\\
10\end{array}\right].

In order to find the optimal coefficients by the orthogonality principle we solve the equation RA = C by inverting R and multiplying to get

R^{-1}C=\left[\begin{array}{ccc}
4.85 & -1.71 & -.142\\
-1.71 & .428 & .2857\\
-.142 & .2857 & -.1429\end{array}\right]\left[\begin{array}{c}
4\\
9\\
10\end{array}\right]=\left[\begin{array}{c}
2.57\\
-.142\\
.5714\end{array}\right]=A.

So we have a1 = 2.57, a2 = − .142, and a3 = .5714 as the optimal coefficients for \hat X_{4}. Computing the minimum mean square error then gives \left\Vert e\right\Vert _{min}^{2}=E[X_{4}X_{4}]-c^{T}A=15-c^{T}A=.2857.[2]

[edit] Notes

  1. ^ Lehmann and Casella, Corollary 4.1.2.
  2. ^ Moon and Stirling.

[edit] Further reading

  • Johnson, D. (22 November 2004). Minimum Mean Squared Error Estimators. Connexions
  • Prediction and Improved Estimation in Linear Models, by J. Bibby, H. Toutenburg (Wiley, 1977). This book looks almost exclusively at minimum mean-square error estimation and inference.
  • Jaynes, E. T. Probability Theory: The Logic of Science. Cambridge University Press, 2003.
  • Lehmann, E. L.; Casella, G. (1998). Theory of Point Estimation. Springer, 2nd ed, ch. 4. ISBN 0-387-98502-6. 
  • Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, 344-350. ISBN 0-13-042268-1. 
  • Moon, T.K. and W.C. Stirling. Mathematical Methods and Algorithms for Signal Processing. Prentice Hall. 2000.
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -