ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Lehmer matrix - Wikipedia, the free encyclopedia

Lehmer matrix

From Wikipedia, the free encyclopedia

In mathematics, particularly matrix theory, the n×n Lehmer matrix is the constant symmetric matrix defined by

A_{ij} =
\begin{cases}
i/j, & j\ge i \\
j/i, & j<i.
\end{cases}

Alternatively, this may be written as

A_{ij} = \frac{\mbox{min}(i,j)}{\mbox{max}(i,j)}.

Contents

[edit] Properties

As can be seen in the examples section, if A is an n×n Lehmer matrix and B is an m×m Lehmer matrix, then A is a submatrix of B whenever m>n. The values of elements diminish toward zero away from the diagonal, where all elements have value 1.

Interestingly, the inverse of a Lehmer matrix is a tridiagonal matrix, where the superdiagonal and subdiagonal have strictly negative entries. Consider again the n×n A and m×m B Lehmer matrices, where m>n. A rather peculiar property of their inverses is that A-1 is nearly a submatrix of B-1, except for the An,n element, which is not equal to Bm,m.

Clearly a Lehmer matrix of order n has trace n.

[edit] Examples

The 2×2, 3×3 and 4×4 Lehmer matrices and their inverses are shown below.


\begin{array}{lllll}
A_2=\begin{pmatrix}
  1   & 1/2  \\
  1/2 &   1  
\end{pmatrix};
&
A_2^{-1}=\begin{pmatrix}
  4/3 & -2/3  \\
 -2/3 & {\color{BrickRed}\mathbf{4/3}}
\end{pmatrix};

\\
\\

A_3=\begin{pmatrix}
  1   & 1/2 & 1/3 \\
  1/2 &   1 & 2/3 \\
  1/3 & 2/3 &   1 
\end{pmatrix};
&
A_3^{-1}=\begin{pmatrix}
  4/3 & -2/3  &      \\
 -2/3 & 32/15 & -6/5 \\
      & -6/5  & {\color{BrickRed}\mathbf{9/5}}
\end{pmatrix};

\\
\\

A_4=\begin{pmatrix}
  1   & 1/2 & 1/3 & 1/4 \\
  1/2 &   1 & 2/3 & 1/2 \\
  1/3 & 2/3 &   1 & 3/4 \\
  1/4 & 1/2 & 3/4 & 1 
\end{pmatrix};
&
A_4^{-1}=\begin{pmatrix}
  4/3 & -2/3  &        &       \\
 -2/3 & 32/15 &  -6/5  &       \\
      & -6/5  & 108/35 & -12/7 \\
      &       & -12/7  & {\color{BrickRed}\mathbf{16/7}}
\end{pmatrix}.
\\
\end{array}


[edit] See also

[edit] References

  • M. Newman and J. Todd, The evaluation of matrix inversion programs, Journal of the Society for Industrial and Applied Mathematics, Volume 6, 1958, pages 466-476.



aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -