ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Impulse invariance - Wikipedia, the free encyclopedia

Impulse invariance

From Wikipedia, the free encyclopedia

Impulse Invariance is a technique for designing discrete-time Infinite Impulse Response (IIR) filters from continuous-time filters in which the impulse response of the continuous-time system is sampled to produce the impulse response of the discrete-time system. If the continuous-time system is appropriately band-limited, the frequency response of the discrete-time system will be defined as the continuous-time system's frequency response with linearly-scaled frequency.

Contents

[edit] Discussion

The continuous-time system's impulse response, hc(t), is sampled with sampling period T to produce the discrete-time system's impulse response, h[n].

h[n]=Th_c(nT)\,

Thus, the frequency responses of the two systems are related by

H(e^{j\omega}) = \sum_{k=-\infty}^\infty{H_c\left(j\frac{\omega}{T} + j\frac{2{\pi}}{T}k\right)}\,

If the continuous time filter is appropriately band-limited (ie. Hc(jΩ) = 0 when |\Omega| \ge \pi/T), then frequency response of the discrete-time system will be defined as the continuous-time system's frequency response with linearly-scaled frequency.

H(e^{j\omega}) = H_c(j\omega/T)\, for |\omega| \le \pi\,

[edit] Comparison to the Bilinear Transform

Note that if H_c(j\Omega)\, is not band-limited, aliasing will occur. The Bilinear Transform is an alternative to Impulse Invariance that uses a direct unique mapping from the continuous-time frequency axis to the discrete-time frequency axis. Impulse Invariance, however, uses a linear scale between the frequency axes for the continuous-time and discrete-time systems, \Omega = \omega/T\,, which is not true for the Bilinear Transform.

[edit] Effect on Poles in System Function

If the continuous-time filter has poles at s = sk, the system function can be written in partial fraction expansion as

H_c(s) = \sum_{k=1}^N{\frac{A_k}{s-s_k}}\,

Thus, using the inverse Laplace transform, the impulse response is

h_c(t) = \begin{cases} 
  \sum_{k=1}^N{A_ke^{s_kt}},  & t \ge 0 \\
  0, & \mbox{otherwise} 
\end{cases}

The corresponding discrete-time system's impulse response is then defined as the following

h[n] = Th_c(nT)\,

h[n] = \sum_{k=1}^N{TA_ke^{s_knT}u[n]}\,

Performing a z-transform on the discrete-time impulse response produces the following discrete-time system function

H(z) = \sum_{k=1}^N{\frac{TA_k}{1-e^{s_kT}z^{-1}}}\,

Thus the poles from the continuous-time system function are translated to poles at z = eskT

[edit] Stability and Causality

Since poles in the continuous-time system at s = s_k\, transform to poles in the discrete-time system at z = eskT, if the continuous-time filter is causal and stable, then the discrete-time filter will be causal and stable as well.

[edit] See also

Infinite Impulse Response (IIR)

Bilinear Transform

Continuous Time Filters: Chebyshev Filter, Butterworth Filter, Elliptic Filter

[edit] Sources

Oppenheim, Alan V. and Schafer, Ronald W. with Buck, John R. Discrete-Time Signal Processing. Second Edition. Upper Saddle River, New Jersey: Prentice-Hall, 1999.

Sahai, Anant. Course Lecture. Electrical Engineering 123: Digital Signal Processing. University of California, Berkeley. 05 April 2007.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -