ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Igusa zeta-function - Wikipedia, the free encyclopedia

Igusa zeta-function

From Wikipedia, the free encyclopedia

In mathematics, an Igusa zeta function is a type of generating function, counting the number of solutions of an equation, modulo p, p2, p3, and so on.

Contents

[edit] Definition

For a prime number p let K be a p-adic field, i.e.  [K: \mathbb{Q}_p]<\infty , R the valuation ring and P the maximal ideal. For z \in K \operatorname{ord}(z) denotes the valuation of z, \mid z \mid = q^{-\operatorname{ord}(z)}, and Failed to parse (Cannot write to or create math output directory): ac(z)=z \pi^{-\operatorname{ord}(z)}

for a uniformizing parameter π of R.

Furthermore let \phi : K^n \mapsto \mathbb{C} be a Schwartz-Bruhat function, i.e. a locally constant function with compact support and let χ be a character of K * .

In this situation one associates to a non-constant polynomial f(x_1, \ldots, x_n) \in K[x_1,\ldots,x_n] the Igusa zeta function

 Z_\phi(s,\chi) = \int_{K^n} \phi(x_1,\ldots,x_n) \chi(ac(f(x_1,\ldots,x_n))) |f(x_1,\ldots,x_n)|^s \, dx

where s \in \mathbb{C}, \operatorname{Re}(s)>0, and dx is Haar measure so normalized that Rn has measure 1.

[edit] Igusa's theorem

Junichi Igusa showed that Zφ(s,χ) is a rational function in t = q s. The proof uses Heisuke Hironaka's theorem about the resolution of singularities. Little is known, however, about explicit formulas. (There are some results about Igusa zeta functions of Fermat varieties.)

[edit] Congruences modulo powers of P

Henceforth we take φ to be the characteristic function of Rn and χ to be the trivial character. Let Ni denote the number of solutions of the congruence

f(x_1,\ldots,x_n) \equiv 0 \mod P^i.

Then the Igusa zeta function

Z(t)= \int_{R^n} |f(x_1,\ldots,x_n)|^s \, dx

is closely related to the Poincaré series

P(t)= \sum_{i=0}^{\infty} q^{-in}N_i t^i

by

P(t)= \frac{1-t Z(t)}{1-t}.

[edit] Reference


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -