Icosahedral 120-cell
From Wikipedia, the free encyclopedia
Icosahedral 120-cell | |
---|---|
Orthogonal projection |
|
Type | Schläfli-Hess polychoron |
Cells | 120 {3,5} |
Faces | 1200 {3} |
Edges | 720 |
Vertices | 120 |
Vertex figure | {5,5/2} |
Schläfli symbol | {3,5,5/2} |
Symmetry group | H4, [3,3,5] |
Coxeter-Dynkin diagram | |
Dual | Small stellated 120-cell |
Properties | -- |
In geometry, the icosahedral 120-cell is a star polychoron with Schläfli symbol {3,5,5/2}. It is one of 10 regular Schläfli-Hess polychora.
It is constructed by 5 icosahedra around each edge in a pentagrammic figure. The vertex figure is a great dodecahedron.
It has the same edge arrangement as the 600-cell, grand 120-cell and great 120-cell.
[edit] References
- Edmund Hess, (1883) Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder [1].
- H. S. M. Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8.
[edit] See also
- List of regular polytopes
- Convex regular 4-polytope - Set of convex regular polychoron
- Kepler-Poinsot solids - regular star polyhedron
- Star polygon - regular star polygons