ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Homography - Wikipedia, the free encyclopedia

Homography

From Wikipedia, the free encyclopedia

Homography is a concept in the mathematical science of geometry. It is defined as a relation between two figures, such that any given point in one figure corresponds to one and only one point in the other, and vice versa.

Contents

[edit] Computer Vision Applications

In the field of computer vision, a homography is defined in 2 dimensional space as a mapping between a point on a ground plane as seen from one camera, to the same point on the ground plane as seen from a second camera. This has many practical applications, most notably it provides a method for compositing 2D or 3D objects into an image or video with the correct pose. The homography matrix is sometimes known as a homograph, a term which has a different meaning in linguistics.


[edit] 3D plane to plane equation

We have two cameras a and b, looking at points Pi in a plane.

Passing the projections of Pi from bpi in b to a point api in a:


{}^ap_i = K_a \cdot H_{ba} \cdot K_b^{-1} \cdot {}^bp_i

where Hba is

H_{ba} = R - \frac{t n^T}{d}

R is the rotation matrix by which b is rotated in relation to a; t is the translation vector from a to b; n and d are the normal vector of the plane and the distance to the plane respectively.

Ka and Kb are the cameras' intrinsic parameter matrices.

Image:Homography-transl.png

The figure shows camera b looking at the plane at distance d.

[edit] Mathematical definition

Given

p_{a} = \begin{bmatrix} x_{a}\\y_{a}\\1\end{bmatrix}, p_{b} = \begin{bmatrix} x_{b}\\y_{b}\\1\end{bmatrix}, \mathbf{H}_{ab} = \begin{bmatrix} h_{11}&h_{12}&h_{13}\\h_{21}&h_{22}&h_{23}\\h_{31}&h_{32}&h_{33} \end{bmatrix}

Then

p_{b} = \mathbf{H}_{ab}p_{a}

and

p_{a} = \mathbf{H}_{ba}p_{b}

where

\mathbf{H}_{ba} = \mathbf{H}_{ab}^{-1}.


[edit] See also

[edit] External links



aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -