ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Hitchin functional - Wikipedia, the free encyclopedia

Hitchin functional

From Wikipedia, the free encyclopedia

The Hitchin functional is a mathematical concept with applications in string theory that was introduced by the British mathematician Nigel Hitchin[1].

As with Hitchin's introduction of generalized complex manifolds, this is an example of a mathematical tool found useful in theoretical physics.

Contents

[edit] Formal definition

This is the definition for 6-manifolds. The definition in Hitchin's article is more general, but more abstract.

Let M be a compact, oriented 6-manifold with trivial canonical bundle. Then the Hitchin functional is a functional on 3-forms defined by the formula:

\Phi(\Omega) = \int_M \Omega \wedge * \Omega,

where Ω is a 3-form and * denotes the Hodge star operator.

[edit] Properties

  • The Hitchin functional is analogous to the Yang-Mills functional for the four-manifolds.
  • Theorem. Suppose that M is a three-dimensional complex manifold and Ω is the real part of a non-vanishing holomorphic 3-form, then Ω is a critical point of the functional Φ restricted to the cohomology class [\Omega] \in H^3(M,R). Conversely, if Ω is a critical point of the functional Φ in a given comohology class and \Omega \wedge * \Omega < 0, then Ω defines the structure of a complex manifold, such that Ω is the real part of a non-vanishing holomorphic 3-form on M.
The proof of the theorem in Hitchin's article [1] is relatively straightforward. The power of this concept is in the converse statement: if the exact form Φ(Ω) is known, we only have to look at its critical points to find the possible complex structures.

[edit] Use in string theory

Hitchin functionals arise in many areas of string theory. An example is the compactifications of the 10-dimensional string with a subsequent orientifold projection κ using an involution ν. In this case, M is the internal 6 (real) dimensional Calabi-Yau space. The couplings to the complexified Kähler coordinates τ is given by

g_{ij} = \tau \text{im} \int \tau i^*(\nu \cdot \kappa \tau).

The potential function is the functional V[J] = \int J \wedge J \wedge J, where J is the almost complex structure. Both are Hitchin functionals [2].

[edit] Notes

  1. ^ a b The original article by Hitchin http://arxiv.org/abs/math/0010054
  2. ^ Hitchin functional in orientifold projections http://arxiv.org/abs/hep-th/0412277


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -