ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Hilbert C*-module - Wikipedia, the free encyclopedia

Hilbert C*-module

From Wikipedia, the free encyclopedia

Hilbert C*-modules are mathematical objects which generalise the notion of a Hilbert space (which itself is a generalisation of Euclidean space), in that they endow a linear space with an "inner product" which takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras (though Kaplansky observed that the assumption of a unit element was not "vital").[1] In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke[2] and Marc Aristide Rieffel, the latter in a paper which used Hilbert C*-modules to construct a theory of induced representations of C*-algebras.[3] Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory,[4] and provide the right framework to extend the notion of Morita equivalence to C*-algebras. [5] They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory[6][7], and groupoid C*-algebras.

Contents

[edit] Definitions

[edit] Inner-product A-modules

Let A be a C*-algebra (not assumed to be commutative or unital), its involution denoted by *. An inner-product A-module (or pre-Hilbert A-module) is a complex linear space E which is a right A-module, together with a map

 \langle \cdot, \cdot \rangle : E \times E \rightarrow A

which satisfies the following properties:

  • For all x, y, z in E, and α, β in C:
 \langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle
(i.e. the inner product is linear in its second argument).
  • For all x, y in E, and a in A:
 \langle x, ya \rangle = \langle x, y \rangle a
  • For all x, y in E:
 \langle x, y \rangle = \langle y, x \rangle^*,
from which it follows that the inner product is conjugate linear in its first argument (i.e. it is a sesquilinear form).
  • For all x in E:
 \langle x, x \rangle \geq 0
and
 \langle x, x \rangle = 0 \iff x = 0.
(Here, the ordering on A is obtained by defining the "positive" elements to be all self-adjoint x of non-negative spectrum.)[8][9]

[edit] Hilbert A-modules

An analogue to the Cauchy-Schwarz inequality holds for an inner-product A-module E:[10]

\langle x, y \rangle \langle y, x \rangle \leq \Vert \langle x, x \rangle \Vert \langle y, y \rangle

for x, y in E. Since for all positive, self-adjoint elements x, y in A, it holds that ||x|| ≤ ||y|| if xy,[11] it follows that

\Vert x \Vert = \Vert \langle x, x \rangle \Vert^\frac{1}{2}

defines a norm on E. When E is complete with respect to the metric induced by this norm, it is a Hilbert A-module or a Hilbert C*-module over the C*-algebra A.

[edit] Examples

[edit] C*-algebras

Any C*-algebra A is a Hilbert A-module under the inner product <a,b> = a*b. Here, the norm on the module coincides with the original norm on A.

[edit] Hilbert spaces

A complex Hilbert space H is a Hilbert C-module module under its inner product, the complex numbers being a C*-algebra with an involution given by complex conjugation.

[edit] Vector bundles

If X is a locally compact Hausdorff space and E a vector bundle over X with a Riemannian metric g, then the space of continuous sections of E is a Hilbert C(X)-module. The inner product is given by

 \langle f,h\rangle (x):=g(f(x),h(x)).

The converse holds as well: Every countably generated Hilbert C*-module over a commutative C*-algebra A=C(X) is isomorphic to the space of sections vanishing at infinity of a continuous field of Hilbert spaces over X.

[edit] Properties

  • Let {eλ}λ ∈ I be an approximate unit for A (a net of self-adjoint elements of A for which xeλ or eλx tend to x for each x in A), and let E be a Hilbert A-module. Then for x in E
\begin{align}
\Vert x - xe_\lambda \Vert ^2 & = \langle x - xe_\lambda, x - xe_\lambda \rangle \\
& = \langle x, x \rangle -  e_\lambda \langle x, x \rangle - \langle x, x \rangle e_\lambda + e_\lambda \langle x, x \rangle e_\lambda  \ \xrightarrow{\lambda} \ 0, \\
\end{align}
whence it follows that EA is dense in E, and x1 = x when A is unital.
  • Writing
 \langle E, E \rangle = \operatorname{span} \{ \langle x, y \rangle | x, y \in E \},
then the closure of <E,E> is a two-sided ideal in A. Since this will also be a C*-algebra (and will therefore have an approximate unit), a calculation similar to the preceding one verifies that E<E,E> is dense in E. In the case when <E,E> is dense in E, E is said to be full. This does not generally hold.

[edit] See also

[edit] Notes and references

  1. ^ Kaplansky, I. (1953). "Modules over operator algebras". American Journal of Mathematics 75 (4): 839–853. doi:10.2307/2372552. 
  2. ^ Paschke, W. L. (1973). "Inner product modules over B*-algebras". Transactions of the American Mathematical Society 182: 443–468. doi:10.2307/1996542. 
  3. ^ Rieffel, M. A. (1974). "Induced representations of C*-algebras". Advances in Mathematics 13: 176–257. Elsevier. doi:10.1016/0001-8708(74)90068-1. 
  4. ^ Kasparov, G. G. (1980). "Hilbert C*-modules: Theorems of Stinespring and Voiculescu". Journal of Operator Theory 4: 133–150. Theta Foundation. 
  5. ^ Rieffel, M. A. (1982). "Morita equivalence for operator algebras". Proceedings of Symposia in Pure Mathematics 38: 176–257. American Mathematical Society. 
  6. ^ Baaj, S.; Skandalis, G. (1993). "Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres". Annales Scientifiques de l'École Normale Supérieure 26 (4): 425–488. 
  7. ^ Woronowicz, S. L. (1991). "Unbounded elements affiliated with C*-algebras and non-compact quantum groups". Communications in Mathematical Physics 136: 399–432. doi:10.1007/BF02100032. 
  8. ^ Arveson, William (1976). An Invitation to C*-Algebras. Springer-Verlag, p. 35. 
  9. ^ In the case when A is non-unital, the spectrum of an element is calculated in the C*-algebra generated by adjoining a unit to A.
  10. ^ This result in fact holds for semi-inner-product A-modules, which may have non-zero elements x such that <x,x> = 0, as the proof does not rely on the nondegeneracy property.
  11. ^ Arveson, William (1976). An Invitation to C*-Algebras. Springer-Verlag, p. 39. 
  • Lance, E. Christopher (1995). Hilbert C*-modules: A toolkit for operator algebraists, London Mathematical Society Lecture Note Series. Cambridge, England: Cambridge University Press. 

[edit] External links


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -