ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Heaviside step function - Wikipedia, the free encyclopedia

Heaviside step function

From Wikipedia, the free encyclopedia

The Heaviside step function, using the half-maximum convention
The Heaviside step function, using the half-maximum convention

The Heaviside step function, H, also called the unit step function, is a discontinuous function whose value is zero for negative argument and one for positive argument. It seldom matters what value is used for H(0), since H is mostly used as a distribution. Some common choices can be seen below.

The function is used in the mathematics of control theory and signal processing to represent a signal that switches on at a specified time and stays switched on indefinitely. It was named in honor of the English polymath Oliver Heaviside.

It is the cumulative distribution function of a random variable which is almost surely 0. (See constant random variable.)

The Heaviside function is an antiderivative of the Dirac delta function: H′ = δ. This is sometimes written as

 H(x) = \int_{-\infty}^x { \delta(t)} \mathrm{d}t

although this expansion may not hold (or even make sense) for x = 0, depending on which formalism one uses to give meaning to integrals involving δ.

Contents

[edit] Discrete form

We can also define an alternative form of the unit step as a function of a discrete variable n:

H[n]=\begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}

where n is an integer.

The discrete-time unit impulse is the first difference of the discrete-time step

δ[n] = H[n] − H[n − 1].

This function is the cumulative summation of the Kronecker delta:

 H[n] = \sum_{k=-\infty}^{n} \delta[k] \,

where

 \delta[k] = \delta_{k,0} \,

is the discrete unit impulse function.

[edit] Analytic approximations

For a smooth approximation to the step function, one can use the logistic function

H(x) \approx \frac{1}{2} + \frac{1}{2}\tanh(kx) = \frac{1}{1+\mathrm{e}^{-2kx}},

where a larger k corresponds to a sharper transition at x = 0. If we take H(0) = ½, equality holds in the limit:

H(x)=\lim_{k \rightarrow \infty}\frac{1}{2}(1+\tanh kx)=\lim_{k \rightarrow \infty}\frac{1}{1+\mathrm{e}^{-2kx}}

There are many other smooth, analytic approximations to the step function[1]. They include:

H(x) = \lim_{k \rightarrow \infty} \frac{1}{2} + \frac{1}{\pi}\arctan(kx) \
H(x) = \lim_{k \rightarrow \infty} \frac{1}{2} + \frac{1}{2}\operatorname{erf}(kx) \

Beware that while these approximations converge pointwise towards the step function, the implied distributions do not strictly converge towards the delta distribution. In particular, the measurable set

\bigcup_{n=0}^{\infty}[2^{-2n};2^{-2n+1}]

has measure zero in the delta distribution, but its measure under each smooth approximation family becomes larger with increasing k.

[edit] Representations

Often an integral representation of the Heaviside step function is useful:

H(x)=\lim_{ \epsilon \to 0^+} -{1\over 2\pi \mathrm{i}}\int_{-\infty}^\infty {1 \over \tau+\mathrm{i}\epsilon} \mathrm{e}^{-\mathrm{i} x \tau} \mathrm{d}\tau =\lim_{ \epsilon \to 0^+} {1\over 2\pi \mathrm{i}}\int_{-\infty}^\infty {1 \over \tau-\mathrm{i}\epsilon} \mathrm{e}^{\mathrm{i} x \tau} \mathrm{d}\tau

[edit] H(0)

The value of the function at 0 can be defined as H(0) = 0, H(0) = ½ or H(0) = 1. H(0) = ½ is the most consistent choice used, since it maximizes the symmetry of the function and becomes completely consistent with the signum function. This makes for a more general definition:

 H(x) = \frac{1+\sgn(x)}{2} =
  \begin{cases} 0,           & x < 0
             \\ \frac{1}{2}, & x = 0
             \\ 1,           & x > 0
  \end{cases}

To remove the ambiguity of which value to use for H(0), a subscript specifying the value may be used:

 H_a(x) =
  \begin{cases} 0, & x < 0
             \\ a, & x = 0
             \\ 1, & x > 0
  \end{cases}

[edit] Antiderivative and derivative

The ramp function is the antiderivative of the Heaviside step function: R(x) := \int_{-\infty}^{x} H(\xi)\mathrm{d}\xi

The derivative of the Heaviside step function is the Dirac delta function: dH(x) / dx = δ(x)

[edit] Fourier transform

The Fourier transform of the Heaviside step function is a distribution. Using one choice of constants for the definition of the Fourier transform we have


\hat{H}(s) = \int\limits^{\infty}_{-\infty} \mathrm{e}^{-2\pi\mathrm{i} x s} H(x)\,  dx  = \frac{1}{2} \left( \delta(s) - \frac{ \mathrm{i}}{\pi s} \right)

Here the 1 / s term must be interpreted as a distribution that takes a test function φ to the Cauchy principal value of \int\limits^{\infty}_{-\infty} \phi(x)/x\, dx.

[edit] See also

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -