ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Geodesic (general relativity)/Proofs - Wikipedia, the free encyclopedia

Geodesic (general relativity)/Proofs

From Wikipedia, the free encyclopedia

[edit] Proof 1

 \nabla_{\vec U} \vec U = 0 ,
 U^\alpha \nabla_\alpha \vec U = 0 ,
UαUβ = 0,
Uα(Uβ + UσΓβσα) = 0,
UαUβ + ΓβσαUαUσ = 0,
 \ddot x^\beta + \Gamma^\beta {}_{\sigma \alpha}  \dot x^\sigma \dot x^\alpha = 0. \

(return to article)

[edit] Proof 2

The goal being to extremize the value of

 l = \int d\tau = \int {d\tau \over d\phi} \, d\phi = \int \sqrt{{(d\tau)^2 \over (d\phi)^2}} \, d\phi = \int \sqrt{{-g_{\mu \nu} dx^\mu dx^\nu \over d\phi \, d\phi}} \, d\phi = \int f \, d\phi

where

 f = \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}

such goal can be accomplished by calculating the Euler-Lagrange equation for f, which is

 {d \over d\tau} {\partial f \over \partial \dot x^\lambda} = {\partial f \over \partial x^\lambda} .

Substituting the expression of f into the Euler-Lagrange equation (which extremizes the value of the integral l), gives

 {d \over d\tau} {\partial \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu} \over \partial \dot x^\lambda} = {\partial \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu} \over \partial x^\lambda}

Now calculate the derivatives:  {d \over d\tau} \left( {-g_{\mu \nu} {\partial \dot x^\mu \over \partial \dot x^\lambda} \dot x^\nu - g_{\mu \nu} \dot x^\mu {\partial \dot x^\nu \over \partial \dot x^\lambda} \over 2 \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}} \right) = {-g_{\mu \nu, \lambda} \dot x^\mu \dot x^\nu \over 2 \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}} \qquad \qquad (1)

 {d \over d\tau} \left( {g_{\mu \nu} \delta^\mu {}_\lambda \dot x^\nu + g_{\mu \nu} \dot x^\mu \delta^\nu {}_\lambda \over 2 \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}} \right) = {g_{\mu \nu , \lambda} \dot x^\mu \dot x^\nu \over 2 \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}} \qquad \qquad (2)

 {d \over d\tau} \left( {g_{\lambda \nu} \dot x^\nu + g_{\mu \lambda} \dot x^\mu \over \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}} \right) = {g_{\mu \nu , \lambda} \dot x^\mu \dot x^\nu \over \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}} \qquad \qquad (3)

 {\sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu} {d \over d\tau} (g_{\lambda \nu} \dot x^\nu + g_{\mu \lambda} \dot x^\mu) - (g_{\lambda \nu} \dot x^\nu + g_{\mu \lambda} \dot x^\mu) {d \over d\tau} \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu} \over -g_{\mu \nu} \dot x^\mu \dot x^\nu} = {g_{\mu \nu , \lambda} \dot x^\mu \dot x^\nu \over \sqrt{-g_{\mu \nu} \dot x^\mu \dot x^\nu}} \qquad \qquad (4)

 {(-g_{\mu \nu} \dot x^\mu \dot x^\nu) {d \over d\tau} (g_{\lambda \nu} \dot x^\nu + g_{\mu \lambda} \dot x^\mu) + {1 \over 2} (g_{\lambda \nu} \dot x^\nu + g_{\mu \lambda} \dot x^\mu) {d \over d\tau} (g_{\mu \nu} \dot x^\mu \dot x^\nu) \over -g_{\mu \nu} \dot x^\mu \dot x^\nu} = g_{\mu \nu ,\lambda} \dot x^\mu \dot x^\nu \qquad \qquad (5)

 (g_{\mu \nu} \dot x^\mu \dot x^\nu) (g_{\lambda \nu ,\mu} \dot x^\nu \dot x^\mu + g_{\mu \lambda ,\nu} \dot x^\mu \dot x^\nu + g_{\lambda \nu} \ddot x^\nu + g_{\lambda \mu} \ddot x^\mu)

= (g_{\mu \nu ,\lambda} \dot x^\mu \dot x^\nu) (g_{\alpha \beta} \dot x^\alpha \dot x^\beta) + {1 \over 2} (g_{\lambda \nu} \dot x^\nu + g_{\lambda \mu} \dot x^\mu) {d \over d\tau} (g_{\mu \nu} \dot x^\mu \dot x^\nu) \qquad \qquad (6)

 g_{\lambda \nu ,\mu} \dot x^\mu \dot x^\nu + g_{\lambda \mu ,\nu} \dot x^\mu \dot x^\nu - g_{\mu \nu ,\lambda} \dot x^\mu \dot x^\nu +  2 g_{\lambda \mu} \ddot x^\mu = {\dot x_\lambda {d \over d\tau} (g_{\mu \nu} \dot x^\mu \dot x^\nu) \over g_{\alpha \beta} \dot x^\alpha \dot x^\beta} \qquad \qquad (7)

 2(\Gamma_{\lambda \mu \nu} \dot x^\mu \dot x^\nu + \ddot x_\lambda) = {\dot x_\lambda {d \over d\tau} (\dot x_\nu \dot x^\nu) \over \dot x_\beta \dot x^\beta} = {U_\lambda {d \over d\tau} (U_\nu U^\nu) \over U_\beta U^\beta} = U_\lambda {d \over d\tau} \ln |U_\nu U^\nu| \qquad \qquad (8)

This is just one step away from the geodesic equation. (return to article)


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -