ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Fourier inversion theorem - Wikipedia, the free encyclopedia

Fourier inversion theorem

From Wikipedia, the free encyclopedia

In mathematics and electrical engineering, Fourier inversion recovers a function from its Fourier transform. Several different Fourier inversion theorems exist.

Sometimes the following identity is used as the definition of the Fourier transform:

(\mathcal{F}f)(t)=\int_{-\infty}^\infty f(x)\, e^{-itx}\,dx.

Then it is asserted that

f(x)=\frac{1}{2\pi}\int_{-\infty}^\infty (\mathcal{F}f)(t)\, e^{itx}\,dt.

In this way, one recovers a function from its Fourier transform.

However, this way of stating a Fourier inversion theorem sweeps some more subtle issues under the carpet. One Fourier inversion theorem assumes that f is Lebesgue-integrable, i.e., the integral of its absolute value is finite:

\int_{-\infty}^\infty\left|f(x)\right|\,dx<\infty.

In that case, the Fourier transform is not necessarily Lebesgue-integrable; it may be only "conditionally integrable". For example, the function f(x) = 1 if −a < x < a and f(x) = 0 otherwise has Fourier transform

2sin(at) / t.

In such a case, the integral in the Fourier inversion theorem above must be taken to be an improper integral (Cauchy principal value)

\lim_{b\rightarrow\infty}\frac{1}{2\pi}\int_{-b}^b (\mathcal{F}f)(t) e^{itx}\,dt

rather than a Lebesgue integral.

By contrast, if we take f to be a tempered distribution -- a sort of generalized function -- then its Fourier transform is a function of the same sort: another tempered distribution; and the Fourier inversion formula is more simply proved.

[edit] Fourier transforms of quadratically integrable functions

Via the Plancherel theorem, one can also define the Fourier transform of a quadratically integrable function, i.e., one satisfying

\int_{-\infty}^\infty\left|f(x)\right|^2\,dx<\infty.

Then the Fourier transform is another quadratically integrable function.

In case f is a quadratically integrable periodic function on the interval then it has a Fourier series whose coefficients are

\widehat{f}(n)=\frac{1}{2\pi}\int_{-\pi}^\pi f(x)\,e^{-inx}\,dx.

The Fourier inversion theorem might then say that

\sum_{n=-\infty}^{\infty} \widehat{f}(n)\,e^{inx}=f(x).

What kind of convergence is right? "Convergence in mean square" can be proved fairly easily:

\lim_{N\rightarrow\infty}\int_{-\pi}^\pi\left|f(x)-\sum_{n=-N}^{N} \widehat{f}(n)\,e^{inx}\right|^2\,dx=0.

What about convergence almost everywhere? That would say that if f is quadratically integrable, then for "almost every" value of x between 0 and 2π we have

f(x)=\lim_{N\rightarrow\infty}\sum_{n=-N}^{N} \widehat{f}(n)\,e^{inx}.

This was not proved until 1966 in (Carleson, 1966).

For strictly finitary discrete Fourier transforms, these delicate questions of convergence are avoided.

[edit] References

  • Lennart Carleson (1966). On the convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157.


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -