ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Four-acceleration - Wikipedia, the free encyclopedia

Four-acceleration

From Wikipedia, the free encyclopedia

In special relativity, four-acceleration is a four-vector and is defined as the change in four-velocity over the particle's proper time:

A =\frac{dU}{d\tau}=\left(\gamma_u\dot\gamma_u c,\gamma_u^2\mathbf a+\gamma_u\dot\gamma_u\mathbf u\right)

where

\mathbf a = {d\mathbf u \over dt} and \dot\gamma_u = \frac{\mathbf{a \cdot u}}{c^2} \gamma_u^3 = \frac{\mathbf{a \cdot u}}{c^2} \frac{1}{\left(1-\frac{u^2}{c^2}\right)^{3/2}}= {u\dot u/c^2 \over (1 - u^2/c^2)^{3/2}}

and γu is the Lorentz factor for the speed u. It should be noted that a dot above a variable indicates a derivative with respect to the time in a given reference frame, not the proper time τ.

In an instantaneously co-moving inertial reference frame \mathbf u = 0, γu = 1 and \dot\gamma_u = 0, i.e. in such a reference frame

A =\left(0, \mathbf a\right)

Therefore, the four-acceleration is equal to the proper acceleration that a moving particle "feels" moving along a world line. The world lines having constant magnitude of four-acceleration are Minkowski-circles i.e. hyperboles (see hyperbolic motion)

The scalar product of a four-velocity and the corresponding four-acceleration is always 0.

Even at relativistic speeds four-acceleration is related to the four-force such that

Fμ = mAμ

where m is the invariant mass of a particle.

In general relativity the elements of the acceleration four-vector are related to the elements of the four-velocity through a covariant derivative with respect to proper time.

A^\lambda := \frac{DU^\lambda }{d\tau} = \frac{dU^\lambda }{d\tau } + \Gamma^\lambda {}_{\mu \nu}U^\mu U^\nu

This relation holds in special relativity too when one uses curved coordinates, i.e. when the frame of reference isn't inertial.

When the four-force is zero one has gravitation acting along, and the four-vector version of Newton's second law above reduces to the geodesic equation.

[edit] See also

[edit] References

  • Rindler, Wolfgang (1991). Introduction to Special Relativity (2nd). Oxford: Oxford University Press. ISBN 0-19-853952-5. 
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -