ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Faltings' theorem - Wikipedia, the free encyclopedia

Faltings' theorem

From Wikipedia, the free encyclopedia

In number theory, the Mordell conjecture stated a basic result regarding the rational number solutions to Diophantine equations. It was eventually proved by Gerd Faltings in 1983, about six decades after the conjecture was made; it is now known as Faltings' theorem.

Contents

[edit] Background

Suppose we are given an algebraic curve C defined over the rational numbers (that is, C is defined by polynomials with rational coefficients), and suppose further that C is non-singular (in this case that condition isn't a real restriction). How many rational points (points with rational coefficients) are on C?

The answer depends upon the genus g of the curve. As is common in number theory, there are three cases: g = 0, g = 1, and g greater than 1. The g = 0 case has been understood for a long time; Mordell solved the g = 1 case, and conjectured the result for the g greater than 1 case.

[edit] Statement of results

The complete result is this:

Let C be a non-singular algebraic curve over the rationals of genus g. Then the number of rational points on C may be determined as follows:

[edit] Proofs

Faltings' original proof used the known reduction to a case of the Tate conjecture, and a number of tools from algebraic geometry, including the theory of Néron models. A number of subsequent proofs have since been found, applying rather different methods.

[edit] References


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -