ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Erosion (morphology) - Wikipedia, the free encyclopedia

Erosion (morphology)

From Wikipedia, the free encyclopedia

Erosion is one of two fundamental operations in Morphological image processing from which all other morphological operations are based. The operation is a subset of set theory, where each pixel in an image is considered to be a member of a set of pixels, rather than the usual interpretation of an image being a strict function of two dimensions.

Contents

[edit] Definition

Erosion: Let A denote a binary image and B denote a structuring element. Then the erosion of A by B is given by:  A \ominus B = \{  z|(B)_z \subset A  \}

The concept of erosion can also be extended to greyscale images. See, for example, Gonzalez (2002).

[edit] Example

Suppose A is a 13 * 13 matrix and B is a 5 * 1 matrix:

    0 0 0 0 0 0 0 0 0 0 0 0 0  
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 1 1 1 1 1 1 1 0 0 0            1
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 

Assuming that the origin B is at its center, for each pixel in A superimpose the origin of B, if B is completely contained by A the pixel is retained, else deleted.

The Erosion of A by B is given by

    0 0 0 0 0 0 0 0 0 0 0 0 0  
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0            
    0 0 0 1 1 1 1 1 1 1 0 0 0            
    0 0 0 0 0 0 0 0 0 0 0 0 0            
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 
    0 0 0 0 0 0 0 0 0 0 0 0 0 


This means that only when B is completely contained inside A that the pixels values are retained, else it gets deleted or in other words it gets eroded.

[edit] See also

[edit] References

R. C. Gonzalez and R. E. Woods, Digital image processing, 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 2002.


This applied mathematics-related article is a stub. You can help Wikipedia by expanding it.
Languages


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -