ebooksgratis.com

See also ebooksgratis.com: no banners, no cookies, totally FREE.

CLASSICISTRANIERI HOME PAGE - YOUTUBE CHANNEL
Privacy Policy Cookie Policy Terms and Conditions
Dyadic tensor - Wikipedia, the free encyclopedia

Dyadic tensor

From Wikipedia, the free encyclopedia

A dyadic tensor in multilinear algebra is a second rank tensor written in a special notation, formed by juxtaposing pairs of vectors, i.e. placing pairs of vectors side by side.

Each component of a dyadic tensor is a dyad. A dyad is the juxtaposition of a pair of basis vectors and a scalar coefficient.

As an example, let

 \mathbf{A} = a \mathbf{i} + b \mathbf{j}

and

 \mathbf{X} = x \mathbf{i} + y \mathbf{j}

be a pair of two-dimensional vectors. Then the juxtaposition of A and X is

 \mathbf{A X} = a x \mathbf{i i} + a y \mathbf{i j} + b x \mathbf{j i} + b y \mathbf{j j} = \left(
\begin{array}{cc}
 \text{ax} & \text{ay} \\
 \text{bx} & \text{by}
\end{array}
\right).

The identity dyadic tensor in three dimensions is

I=i i + j j + k k

The dyadic tensor

J=j i − i j =  \left(
\begin{array}{cc}
 0 & -1 \\
 1 & 0
\end{array}
\right)

is a 90° rotation operator in two dimensions. It can be dotted (from the left) with a vector to produce the rotation:

 (\mathbf{j i} - \mathbf{i j}) \cdot (x \mathbf{i} + y \mathbf{j}) =
x \mathbf{j i} \cdot \mathbf{i} - x \mathbf{i j} \cdot \mathbf{i} + y \mathbf{j i} \cdot \mathbf{j} - y \mathbf{i j} \cdot \mathbf{j} = 
-y \mathbf{i} + x \mathbf{j}.
\left(
\begin{array}{cc}
 0 & -1 \\
 1 & 0
\end{array}
\right)\left(
\begin{array}{c}
 x \\
 y
\end{array}
\right)=\left(
\begin{array}{c}
 -y \\
 x
\end{array}
\right)

a General 2-D Rotation Dyadic for θ angle, anti-clockwise

I \text{cos}[\theta ] + J \text{sin}[\theta ]=\left(
\begin{array}{cc}
 \text{cos}[\theta ] & -\text{sin}[\theta ] \\
 \text{sin}[\theta ] & \text{cos}[\theta ]
\end{array}
\right)

This can be put on more careful foundations (explaining what the logical content of "juxtaposing notation" could possibly mean) using the language of tensor products. If V is a finite-dimensional vector space, a dyadic tensor on V is an elementary tensor in the tensor product of V with its dual space. The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v. When V is Euclidean n-space, we can (and do) use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in Euclidean space. In this sense, the dyadic tensor i j is the function from 3-space to itself sending ai + bj + ck to bi, and j j sends this sum to bj. Now it is revealed in what (precise) sense i i + j j + k k is the identity: it sends ai + bj + ck to itself because its effect is to sum each unit vector in the standard basis scaled by the coefficient of the vector in that basis.

[edit] See also


aa - ab - af - ak - als - am - an - ang - ar - arc - as - ast - av - ay - az - ba - bar - bat_smg - bcl - be - be_x_old - bg - bh - bi - bm - bn - bo - bpy - br - bs - bug - bxr - ca - cbk_zam - cdo - ce - ceb - ch - cho - chr - chy - co - cr - crh - cs - csb - cu - cv - cy - da - de - diq - dsb - dv - dz - ee - el - eml - en - eo - es - et - eu - ext - fa - ff - fi - fiu_vro - fj - fo - fr - frp - fur - fy - ga - gan - gd - gl - glk - gn - got - gu - gv - ha - hak - haw - he - hi - hif - ho - hr - hsb - ht - hu - hy - hz - ia - id - ie - ig - ii - ik - ilo - io - is - it - iu - ja - jbo - jv - ka - kaa - kab - kg - ki - kj - kk - kl - km - kn - ko - kr - ks - ksh - ku - kv - kw - ky - la - lad - lb - lbe - lg - li - lij - lmo - ln - lo - lt - lv - map_bms - mdf - mg - mh - mi - mk - ml - mn - mo - mr - mt - mus - my - myv - mzn - na - nah - nap - nds - nds_nl - ne - new - ng - nl - nn - no - nov - nrm - nv - ny - oc - om - or - os - pa - pag - pam - pap - pdc - pi - pih - pl - pms - ps - pt - qu - quality - rm - rmy - rn - ro - roa_rup - roa_tara - ru - rw - sa - sah - sc - scn - sco - sd - se - sg - sh - si - simple - sk - sl - sm - sn - so - sr - srn - ss - st - stq - su - sv - sw - szl - ta - te - tet - tg - th - ti - tk - tl - tlh - tn - to - tpi - tr - ts - tt - tum - tw - ty - udm - ug - uk - ur - uz - ve - vec - vi - vls - vo - wa - war - wo - wuu - xal - xh - yi - yo - za - zea - zh - zh_classical - zh_min_nan - zh_yue - zu -